
Development of a Water Budget Management System
for Fire Potential Mapping

Jinmu Choi
Department of Geosciences, Mississippi State University, P.O. Box 5448, 
Mississippi State, Mississippi 39762

William H. Cooke1 
Department of Geosciences and GeoResource Institute, Mississippi State 
University, PO Box 5448, Mississippi State, Mississippi 39762

Mark D. Stevens
NVision Solutions, Inc., 13131 Hwy 603, Suite 304, Bay St. Louis, 
Mississippi 39520

Abstract: A water budget is important for environmental models such as a fire
potential model. For the eastern United States, water budget indices derived from the
cumulative interplay of precipitation and evaporation characterizes moisture condi-
tions better than the Keech-Byram drought index. Because there are various sources
of precipitation and evaporation data, it is difficult to manage those data consistently
through time in order to derive cumulative water budget indices. In this study, we
developed a water budget management system (WBMS) that downloads climate
data and calculates a water budget. A geodatabase was designed to support the
WBMS. Finally, the WBMS was tested for mapping fire potential in Mississippi.

INTRODUCTION

Daily water budget calculations are important for development of a dynamic
variable that should be considered for modeling fire potential, making crop manage-
ment decisions, and for other applications focusing on water management and conser-
vation (Cooke et al., 2008). In particular, fire potential modeling is an example of an
environmental model in which climate data play an important role. Much of the exist-
ing literature on fire potential modeling in the U.S. is oriented toward the western
U.S. (Morgan et al., 2001), which utilizes the Keech-Byram drought index (KBDI) as
an indicator of landscape moisture condition. Although indices like KBDI are often
used (Texas Forest Service, Wildland Fire Assessment System [WFAS], etc.) to esti-
mate fire potential, the usefulness of KBDI alone for determining fire potential in the
eastern United States has not been documented in the literature.
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Morris (2007) tested the usefulness of KBDI alone as a measure of fire potential
and found that KBDI was a poor predictor of forest fire risk potential in southern
Mississippi. The regression results of fire occurrence and KBDI indicated poor model
fit, and very little of the variance in fire frequency or fire size was explained by KBDI
(R2 = .048 and .066 respectively). Therefore, daily water budget indices instead of
KBDI were derived to represent landscape moisture for the southeastern U.S. 

The daily water budget can be calculated by expressing the interplay of precipita-
tion and evaporation. There are two common sources for precipitation data: weather
station data and interpolated Doppler (NEXRAD: Next-Generation Radar) radar esti-
mates.2 In Mississippi, precipitation data are provided at only 26 weather stations that
are located in the eastern and southern areas of the state. On the other hand,
NEXRAD radar estimates of daily precipitation are recorded at 4 km intervals across
the state on the Hydrologic Rainfall Analysis Project (HRAP) point grid. Estimated
precipitation at high spatial densities (4 km) offers increased spatial precision neces-
sary for recording the relatively small convective weather events that are characteris-
tic of summer weather conditions. According to the Statements of Guidance (SOGs)
provided by the World Meteorological Organization,3 quantitative precipitation
observations from satellite measurements (e.g. data from TRMM satellite) do not
meet accuracy requirements (WMO, 2008). The SOGs also stated that “Precipitation
depth and type are routinely observed on an hourly to daily basis at synoptic weather
stations but there are large regional differences in coverage; spatial and temporal
coverage of rainfall observations is improving using ground radar techniques.” The
statement supports our adoption of NEXRAD data for precipitation estimates.

Acquisition of pan evaporation data for water budget calculations is also a chal-
lenge due to sparse spatial distribution of measurement devices and concerns regard-
ing data accuracy. Because evaporation pans and automated measurement devices are
expensive, the National Weather Service maintains evaporation pans at a limited
number of weather stations around the U.S. (Jones, 1992). For example, in Missis-
sippi relatively few evaporation pans are maintained and most are in the northern two-
thirds of the state (Bell, 2004). In addition to the relative scarcity of the evaporation
measurement devices, the accuracy of pan evaporation estimates has been questioned
by numerous researchers (e.g., Bruton et al., 2000; Sumner and Jacobs, 2005). In
addition, precipitation events interfere with accurate measurement of pan evaporation
(Lindsey and Farnsworth, 1997). Errors in rainfall measurement and inconsistency in
rainfall capture add error to recorded pan evaporation data (Sumner and Jacobs,
2005). To solve these obstacles in pan evaporation estimates, Cooke et al. (2008) sug-
gested a regression model for estimating pan evaporation for the southeastern U.S., a
method that was applied in this study

Although previous studies provide enhanced methodologies for accurately esti-
mating precipitation and evaporation, water budget calculations are still a labor-inten-
sive process because of the need to integrate data from multiple sources, different data
types, different map projections, and the difficulty of maintaining and accumulating

2Multi-Sensor Precipitation Estimates (MPE) data from NEXRAD radar are provided by the National
Oceanic and Atmospheric Administration Hydrologic Data Systems Group and are available at their web-
site (http://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html).

3More information is available at www.wmo.int/pages/index_en.html.
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precipitation and evaporation data. Therefore, in this study, a water budget manage-
ment system (WBMS) was developed to automate water budget data management
from downloading data to deriving water budget indices that are directly used in envi-
ronment models. To store the spatio-temporal climate data, ESRI’s geodatabase was
used in the WBMS. 

The developed WBMS was then tested for use in fire potential models developed
for the state of Mississippi. Fire is of ecological and economic importance in the
United States, and fire frequency data obtained from the Mississippi Forestry Com-
mission (MFC) indicates that on average, for a 15-year period beginning in 1990, fire
personnel were dispatched to over 3,700 fires per year (Cooke et al., 2007). Decisions
regarding fire response and suppression, and personnel and equipment staging, pre-
scribe burning for fuel reduction, and implementation of burn bans could benefit from
spatio-temporal depictions of fire potential.

In the next section of this paper (“Methods”), the cumulative interplay of precip-
itation and evaporation was examined to help characterize various landscape moisture
conditions in the eastern U.S. as an alternative to KBDI. The water budget index was
derived by comparing daily water budget assessments with 50-year historic water
budget data. In a third section (“Water Budget Management System”), the design and
implementation of the WBMS is discussed. The design of a geodatabase was included
to facilitate understanding of the approach used to store and automate calculations
performed with climate data. In the fourth section (“Mapping Fire Potential”), the use
of WBMS for mapping fire potential for Mississippi is discussed. Key issues are sum-
marized in the concluding section.

METHODS

Water Budget Calculation

The interaction of precipitation (P) and evaporation (E) helps to characterize
landscape moisture. This study derives water budget estimates using daily assess-
ments of precipitation and evaporation. Precipitation values were derived from Dop-
pler radar–based estimates of hourly rainfall accumulation, available on the HRAP
grid. Evaporation values were estimated from weather station observations using
regression models of temperature and humidity (Cooke et al., 2008). 

A more accurate water budget could be calculated using evapotranspiration
instead of evaporation. However, data necessary for evapotranspiration calculation is
often not available. For example, the Penman-Monteith equation, a commonly used
estimator of evapotranspiration (Monteith, 1965), requires measurement of solar radi-
ation, air temperature, relative humidity, wind speed, and other vegetation-specific
parameters (i.e., stomatal resistance or conductance) (Beven, 1979). A complete set of
these input elements at locations that are spatially well distributed over large areas is
rare. For example, of 178 weather stations in Mississippi, only 17 stations consis-
tently record solar radiation (Cooke et al., 2008). To derive the water budget index we
used evaporation to insure consistency with the historic cumulative P-E. Therefore,
this study adopted regression-based evaporation estimation (Cooke et al., 2008).
Evaporation estimates were subtracted from precipitation to compute a daily cumula-
tive water budget. 
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NEXRAD Doppler Radar–Based Precipitation Estimates

Until 2006, NEXRAD radar data were available in the form of binary files that
contained hourly values over an entire region. For modeling purposes, the precipita-
tion data must be accumulated every 24 hours to match the temporal resolution of the
daily evaporation data. The radar data are presented in a binary format (XMRG) in
the HRAP coordinate system. Each data file begins with a header that contains the
origin, number of columns and rows represented in the file, and other metadata. In the
body of the file, data is presented in rows and columns. A point’s location in the
XMRG file is directly related to its HRAP coordinate. For example, if the origin in
the file header is (100,100), then a point in column 30, row 15 has HRAP coordinates
of (130,115). 

Beginning in 2007, however, radar data became available in shapefile format.
Therefore, it is no longer necessary to read binary files and determine HRAP coordi-
nates. A precipitation shapefile can be directly imported into the precipitation class in
a geodatabase. 

Regression for Evaporation

Precipitation (P) is a critical fuel moisture component in a fire potential model,
but high temperatures in Mississippi are associated with high rates of evaporation (E).
Including evaporation in water budget calculations is important when determining
available moisture in the environment. Pan evaporation stations that provide evapora-
tion data exist, but are sparsely distributed across the southeastern United States.
Therefore, in this study, evaporation data were estimated by Cooke et al.’s (2008)
regression models for inland and coastal locations, which characterize the lower and
higher humidity environments of the landscape, respectively. Three linear regression
models were constructed and validated using minimum daily relative humidity, maxi-
mum daily temperature, and total daily solar radiation data acquired at several pan
evaporation locations (Fig. 1). Observation station networks for predicting evapora-
tion consisted of 178 weather stations integrated from the National Weather Service,
the Louisiana Agriclimatic Information Center,4 the Mississippi State University
Extension Service,5 and the University of Utah’s “Meso West” weather service6

(Cooke et al., 2008). In Figure 1, the best inland model (BIM) was applied to predict
evaporation when solar radiation data were available for which only 17 of 178 sta-
tions were recording solar radiation. If a weather station only recorded relative
humidity and temperature, an optional inland model (OBIM) was applied for the
weather station. For the coastal areas, the best coastal model (BCM) was applied to
predict evaporation. 

Weather station observation (evaporation) data were delivered as ASCII files
that can contain daily observations for specified periods of time. This study utilized
maximum temperature and minimum relative humidity to estimate evaporation based

4Information available at http://www.lsuagcenter.com/weather/
5Information available at http://ext.msstate.edu/anr/drec/
6Information available at http://www.met.utah.edu/mesowest/
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on station_ID and date. Weather station location data (latitude and longitude) were
extracted from the header information of each weather station data file.

Water Budget (P-E) Index Calculation

Daily water budget estimates were calculated by accumulating daily precipitation
minus evaporation (P-E) estimates (Fig. 2A). Historic water budget estimates were
interpolated from historic water budget point data (Fig. 2B). Daily water budget esti-
mates were then compared to the historic water budget. The water budget variable is
an index that was calculated by measuring the daily departure of P-E from the historic
P-E averages (Fig. 2C). While not a direct measure of the water budget, this index
is representative of landscape moisture conditions (i.e., how wet or dry the current
conditions are compared to the historic average water budget). For fire potential mod-
eling, the spatial depiction of cumulative wet or dry landscape conditions, used in
conjunction with vegetation (fuels) information and ignition probability. provide both
a spatial and temporal view of patterns of fire potential.

WATER BUDGET MANAGEMENT SYSTEM

Framework of the Water Budget Management System

The water budget management system (WBMS) is a stand-alone application
designed to facilitate climate data management and to calculate a daily cumulative
water budget for the state of Mississippi (Fig. 3). The WBMS has three main mod-
ules: (1) climate (precipitation and evaporation) data import; (2) climate data accumu-
lation and water budget index calculation; and (3) fire potential mapping. The climate
data import module automates downloading of climate data from the website,7 data
formatting, HRAP coordinate transformation, loading the data into a geodatabase, and
deleting all intermediate files. Because the water budget (P-E) is cumulative in nature,
it is necessary to accumulate the climate (precipitation and evaporation) data over
various temporal periods. The water budget index is then derived by comparing the
accumulated water budget with the 50-year historic water budget in the water budget
calculation module. The resulting data are then stored into a geodatabase. Finally, the
water budget index in the geodatabase can be used for the fire potential mapping.

Geodatabase Design for Spatio-temporal Climate Data

To manage spatio-temporal climate data, this study adopted the ESRI geodata-
base design (Fig. 4) that contains four types of data: point features, observations,
time, and regression information. Feature classes include radar sample points (radar-
Location) and weather station location (StationLocations). Two object classes store
radar data (radarObservation) and weather station data (StationObservations) that are

7The website of the NEXRAD Radar for precipitation is http://www.srh.weather.gov/rfcshare/
p_download. The website of the MesoWest for evaporation is http://www.met.utah.edu/cgi-bin/droman/
mesomap.cgi?state=MS&rawsflag=3
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Fig. 2. Example of water budget (P - E) index calculation for January 2008.
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related to the corresponding feature table based on measurement time in the time table
(UpdateHistory table). The relationship is a one-to-many relationship between the
location feature class and the observation object class. While transaction time is
stored in the dateofUpdate field in the updateHistory table, the real data collection
time is stored in the dateofStart and dateofCurrent fields as well as in the updateHis-
tory table. Precipitation and evaporation are accumulated based on the time period
chosen by the user and stored in the accumulation tables, PrecipitationAccumulation
and EvaporationAccumulation. These tables are related to the corresponding feature

Fig. 3. Framework of the water budget management system (WBMS).

Fig. 4. UML geodatabase model for climate data management.
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tables, radarLocation and StationLocations, respectively, by a one-to-one relationship.
The regression formulas for evaporation calculation are stored in the evapCoeff table. 

Implementation of Water Budget Management System

There are 14 procedures in the graphical user interface of the WBMS (Fig. 5).
The upper part of the user interface (including procedures 1 to 7) is used for the
climate data import module (see Fig. 3). The lower part of the user interface (includ-
ing procedures 8 to 13) is used to accumulate climate data and calculate the water
budget index. Procedure 14 (at the bottom of the user interface) is used to calculate
the fire potential for the state of Mississippi.

Coordinate Transformation

Data for water budget calculations come from a variety of sources. Consequently,
their various projections and coordinate systems must be unified. When importing
new features, they are reprojected into a single projection (Mississippi State Trans-
verse Mercator [MSTM] system) used throughout the geodatabase. The source pro-
jection is determined by the data provider and the projection employed in the
geodatabase is used as the target projection.

While weather station data are presented in a standard geographic coordinate sys-
tem, radar data are presented in a unique coordinate system known as HRAP. The
HRAP coordinate system uses a secant polar stereographic projection with standard
(true) latitude of 60° N, a standard longitude (longitude of the coordinate system ori-
gin) of 105° W, a false easting of –401, and a false northing of –1601. It also uses a

Fig. 5. A diagram illustrating the modules of the water budget management system (WBMS).
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spherical earth datum with a radius of 6,371.2 km. Features in the HRAP coordinate
system must first be transformed to a geographic coordinate system (GCS) before
they can be reprojected to MSTM. 

Weather station data and radar data obtained after 2006 are already in a GCS that
is the source projection in projection transformation. The target projection is MSTM.
Once both the source and target projections are defined, the feature class is projected.

Data Population

The climate data in the geodatabase is populated in one of two ways: ESRI’s
ArcObjects and Microsoft’s ActiveX Data Objects (ADO). Feature classes contain
spatial data that must be accessed through the interfaces in ArcObjects. Other stand-
alone attribute tables in the geodatabase can be treated as any other database table and
accessed using either ArcObjects or ADO.

The first step in creating a new feature is to set up the geometry type of the
feature. This step involves setting the projection and coordinate system (“spatial ref-
erence”) of the geometry, assigning an x and y value, and projecting the geometry into
the target projection. The next step is to assign the geometry to a new feature. Then
any additional fields available in the feature class can be populated (e.g., feature
name). Finally, the feature is added to the feature class.

MAPPING FIRE POTENTIAL: APPLICATION OF WATER 
BUDGET INDEX

Fire Potential Model for Mississippi

Fire potential modeling requires consideration of various geospatial data.
Morgan et al. (2001) compared several approaches for mapping fire regimes, includ-
ing two rule-based approaches—a vegetation succession modeling approach and a
statistical modeling approach for the Interior Columbia River Basin. Results of these
comparisons show that fire frequency is related to four factors: climate, vegetation
(fuels), anthropogenic influences (ignition), and topography (Morgan et al., 2001).
Topography is an important fire variable in the western U.S., where changes in eleva-
tion and aspect are determinants of vegetation and climate. However, topography has
less influence on fire risk potential in the eastern U.S. where topography is character-
ized by much gentler slopes (Zhai et al., 2003). Therefore, this study includes three
primary weighted variables in the fire potential model for Mississippi: Climate (Water
Budget), Ignition, and Fuel (Vegetation). Equation 4.1 illustrates the fire potential
model developed in this study. 

Fire potential = w1 × Climate + w2 × Fuel + w3 × Ignition, (1)

where w1, w2, and w3 are weighting factors and sum to 1. Derivation of the climate
variable is discussed above. Other model variables are discussed in detail below.

Fuels. Typically, fuel load is a relatively static or slowly changing variable; how-
ever, sudden changes in moisture conditions and substantial vegetation loss can con-
tribute to rapid changes in fire potential. For the fuel component in this fire potential
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model, tree age and species data were acquired from the Forest and Wildlife Research
Center at Mississippi State University. Collins et al. (2005) extracted tree age and
species from Landsat MSS, TM, and ETM+ data at five-year intervals from 1973 to
2003. Tree age data for a species were calculated by post-classification comparison of
temporally different Landsat data. For example, if an area classified as non-forested
from Landsat MSS in 1973 and classified as pine trees from Landsat MSS, TM, and
ETM+ in 1978 through 2003, the area was recorded as 26–30 years pine trees. The
overall accuracy of the age and species product was 61%. The accuracy is acceptable
for this study considering the lack of reference data for classification accuracy assess-
ment of early MSS and TM images. Tree age data include four classes: 10–19 years,
20–25 years, 26–30 years, and regeneration. Tree species association data include
three classes: pine, mixed pine and hardwood, and hardwood. Combination of tree
ages and species associations enabled derivation of 12 unique combinations. The
resulting 12 classes were merged with the USGS land cover data (NLCD) in order to
incorporate more detailed information about non-forested areas with the forested land
cover information. The final results of the unique forest age/type group and non-for-
est combinations were assigned fire potential ranks ranging from 0 (no fire potential)
to 5 (very high fire potential) (Fig. 6A).

Ignition. Anthropogenic factors play a major role in fire ignition in Mississippi.
Humans affect wildfire ignition by altering the vegetative fuel load characteristics and
by providing an ignition source (Pye et al., 2003; Petrakis et al., 2005). Human
impacts on wildfire ignition can be measured by accessibility and interaction of
human and forest. For accessibility to forest, Pye et al. (2003) demonstrated that prox-
imity to roads and certain levels of road density were significantly correlated with
increased fire potential. Gilreath (2006) showed that in Mississippi areas of moderate
road density are at significantly higher potential. On the other hand, human interac-
tion with forest can be measured by a gravity-based model. Sadasivuni (2007) tested
the interaction among cities and medium-age (10 to 19 years) large contiguous pine
forests for fire frequency relationships in Mississippi. The results of interaction of
humans and forests showed that the areas of medium and low interaction have
medium and low fire frequency, respectively, relative to fire occurrence. Therefore, to
predict fire ignition, this study incorporates both human accessibility to forests and
human interaction with forests. Human accessibility to forests is derived based on the
level of roads (county, state, or interstate). Human interaction with forests is derived
based on population size for cities and the distance of forests from those cities in
Mississippi. The resulting ignition data are also assigned fire potential ranks ranging
from 0 (no fire potential) to 5 (very high fire potential) (see Fig. 6B), which shows
that the fire potential increases closer to roads and cities, particularly in areas charac-
terized as the Wildland-Urban Interface (WUI). Since Mississippi has a humid
climate, only 1.9% (0.5% lightning, 1.4% re-ignition) of all fires that required sup-
pression in Mississippi over a 17-year fire record were non-anthropogenic in origin,
based on the fire frequency data obtained from the MFC. 

Mapping with Fire Potential Model

The fire potential was mapped using the fire potential model with three weighted
variables: climate, fuel, and ignition. The water budget index (see the previous
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Fig. 6. Fire potential for the state of Mississippi in January 2008.
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subsection on “Regression for Evaporation”) developed as part of this study was used
for the climate component and is the focus of this paper. To incorporate these three
variables into a single multi-criteria evaluation, we assigned different weights to each
variable based the relative importance of each variable to fire potential. The fire
potential model is re-calibrated January 1 of each year and is focused on describing
fire potential for the late-summer/early-fall fire season. Fire frequency and size during
this season are considered to be highly correlated with antecedent climatic conditions
(Dixon et al., 2008). Consequently, the weights are 70% to w1 for climate, 20% to w2
for fuel, and 10% to w3 for ignition in the fire potential model (see Eq. 1). The result-
ing fire potential map for Mississippi is shown in Figure 6. For January 2008, the fire
potential map shows very low fire potential in the southern coast area in Mississippi,
because the water budget (P-E) is much higher than the average history water budget
in the area during January. Most spatial depictions of areas of higher fire potential in
Mississippi occur in areas that are drier that the average historic water budget at those
locations.

CONCLUSION

In this study, a water budget management system (WBMS) was developed,
which includes three modules: climate data importing, climate data accumulation and
water budget index calculation, and fire potential mapping. In particular, the climate
data importing module automates the data importing process including data projec-
tion, database creation, and data population. For data storage, ESRI’s geodatabase
was used to maintain spatio-temporal climate data consistently.

The water budget index calculation module derives a water budget index from
precipitation and evaporation data. NEXRAD radar data provide precipitation at
higher spatial density relative to weather station data. NEXRAD radar data have been
shown to be better at characterizing precipitation, particularly in the summer, when
rainfall is more convective in nature. Predicted and interpolated evaporation at
weather station locations provides higher spatial density of evaporation estimates than
interpolation of actual evaporation obtained from pan evaporation stations. Local
measurements of precipitation and evaporation are used to derive descriptive water
budgets (precipitation-evaporation). The water budgets are then compared to the 50-
year historic water budgets in order to derive a spatio-temporal water budget index
that represents relative landscape moisture as compared to the historic average land-
scape moisture content.

Finally, as one application of the developed WBMS, a fire potential model
was developed for Mississippi utilizing three weighted variables (fuel, ignition, and
climate). The fuel data were derived from tree age and species models, while ignition
data were derived from human accessibility to forest and human interaction with for-
est models. For the climate data, water budget indices were used as calculated in the
WBMS. The resulting map of fire potential showed that the southern coastal area had
lower fire potential overall in Mississippi, mainly because of higher values in water
budget indices. The WBMS developed in this study can be used for any application
that utilizes water budget information and may be applicable to mapping fire potential
for the entire southeastern United States. 
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