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ABSTRACT 

Background and Objective: Large soil databases built with prediction methods can impose 

multiple limitations associated with prediction uncertainty. The objective of this study was to 

evaluate the accuracy of predicting soil properties with a polygon‐based prediction approach and 

to assess the influence of the edaphic and topographic landscape context on that prediction 

accuracy. Materials and Methods: Ground-verified soil data (sand, silt, and clay, organic matter, 

and pH) were collected from 443 sample sites throughout Mississippi, and GIS predicted soil data 

were downloaded from the SSURGO database. The influence of the surrounding landscape at 

different spatial scales (0-300 m and 0-3000 m) on the absolute differences between ground-

verified and GIS predicted values was evaluated using generalized linear models (GLMs). Results: 

Landscapes with high variability in the evaluated edaphic attributes showed higher differences 

between ground-verified and GIS predicted data, which suggested that the prediction accuracy of 

soil properties with GIS techniques decreases in landscapes with more variable edaphic attributes 

However, differences between ground-verified and GIS predicted data were generally lower in 

landscapes where edaphic and topographic data were spatially more heterogeneous. This could be 

the result of there being greater samples taken to develop the SSURGO database from areas with 

more heterogeneous soils or topography. Furthermore, differences between ground-verified and 

GIS predicted soil data were higher when the sample sites were nearer transportation routes and/or 

utility ROWs. Conclusion: Results showed that the surrounding land use and edaphic and 

topographic landscape highly influence the prediction accuracy of soil attributes with GIS 

techniques. 
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INTRODUCTION 

Mapping soil properties at large scales can be challenging because soil attributes change 

continuously in space and time1,2. However, there is an increasing demand for high‐resolution 

spatial soil maps from land managers, farmers, and researchers to refine management practices 

and improve research2,3. Therefore, multiple entities and initiatives, such as the United States 

Department of Agriculture–Natural Resources Conservation Service (USDA‐NRCS) or the 

GlobalSoilMap, have developed digital soil maps based on geographic information systems (GIS) 

data layers at large spatial scales. Such databases are generated by sampling representative spatial 

points and then predicting the values of the remaining area with different techniques, including 

spatial interpolation4,5 and predictions from soil polygons4,6. The use of soil polygons across large 

spatial scales to predict soil data from a limited number of representative sample points is a 

common approach used by the USDA‐NRCS3. 

Although the use of large soil databases built with prediction methods can be beneficial for 

research on ecological patterns, it can impose multiple limitations associated with prediction 

uncertainty. For example, deterministic models used to predict soil property values involve some 

inherent degree of uncertainty, because they cannot capture the full extent of soil variation2. 

Likewise, considering the high spatial and temporal variation of soil properties1,2, another 

important source of uncertainty comes from the generation of polygon map units with a single 

value per soil property, or the prediction of soil values with different interpolation techniques3. 

To the best of our knowledge, an evaluation of the possible influence of different landscape 

variables on data prediction accuracy of soil databases is lacking in the literature. In this regard, it 

may be that areas with certain landscape characteristics will negatively affect the prediction 

accuracy of resulting ecological models. For example, it may be more likely that the GIS predicted 

data differ from ground-verified data if the area around the sample sites has a high diversity of soil 

types or high variability of a given edaphic attribute. Also, local topography or topographic 

heterogeneity could cause differences between ground-verified data and GIS predicted data. 

Lastly, road construction and maintenance activities move large amounts of soil, which could 

increase the spatial and temporal variation of soil properties in nearby areas. Therefore, proximity 

to roads could be an important factor affecting the prediction accuracy of GIS models. 
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The objectives of this study were a) to evaluate the accuracy of predicting soil properties 

with a polygon‐based prediction approach (GIS predicted data), b) to assess the influence of the 

edaphic and topographic landscape context on that prediction accuracy, and c) to examine possible 

road effects on prediction accuracy of soil properties. For the first objective, ground-verified data 

collected in multiple sample sites was compared with GIS predicted data generated by the US Soil 

Survey Geographic (SSURGO) database. For the second objective, different edaphic and 

topographic properties were analyzed within two spatial scales around the sample sites. The 

prediction for this second objective was that landscapes with high edaphic and topographic 

heterogeneity and variability would have lower prediction accuracy of soil properties than 

landscapes with the opposite characteristics. The prediction for the third objective was that sample 

sites near roads would have higher absolute differences between ground-verified data and GIS 

predicted data than sample sites far from roads. 

MATERIALS AND METHODS 

The study area for ground soil data collection: Soil data collection was carried out in 443 sample 

sites throughout Mississippi (USA), spanning an area of 125,430 km2, from May 2006 to 

September 2009. The sample sites were randomly distributed throughout multiple soil association 

units and geographic regions present in the state, where permission to collect soil samples could 

be readily obtained. 

Edaphic and topographic attributes: At each sample site, soil samples from the upper 10 to 20 

cm of the soil (below the unconsolidated organic layer, where present) were collected to analyze 

soil particle size composition (sand, silt, and clay; measured in percentage), organic matter 

(percent by weight), and pH (ranges from 0 to 14) in the laboratory. Soil particle size analysis was 

performed by the hydrometer method, with corrections for temperature, as needed7,8, at Biological 

Sciences Department, Plant Ecology Lab, Mississippi State University, USA from May 2006 to 

September 2009. Analyses of pH and organic matter were carried out at Department of Plant and 

Soil Sciences, Soil Testing Lab, Mississippi State University, USA from May 2006 to September 

2009. Soil pH was measured in water in a 1:2 soil: water slurry and organic matter was determined 

by the loss of mass after ignition9.  

Predicted soil data based on geographic information systems (GIS) data layers were 

downloaded from the SSURGO database, which contains multiple soil attributes collected by the 
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National Cooperative Soil Survey over a century at scales ranging from 1:12,000 to 1:63,360. This 

large database is divided into polygon map units, which include soils and other components that 

have unique properties, interpretations, and productivity. Those polygon map units are based on 

tacit soil-landscape and slope models, and their soil property values have been assigned from a 

low number of representative pedons sampled within them3. Soil data were downloaded on 

October 23rd, 2019. Then the downloaded shapefile layers were rasterized to a 30-m resolution 

grid and selected the soil attributes of interest (percent of sand, silt, and clay; organic matter 

(percent by weight); and pH). Lastly, the blank rows of the raster layers were reclassified as 

“NoData” values. 

Topographic variables were downloaded from the U.S. Geological Survey 

(www.nationalmap.gov). This database contains digital elevation data available at 100-m 

resolution from 2013. Using the bilinear resample technique, the elevation raster layer was 

resampled to a grid of 30 m pixel size. This technique calculates the value of each pixel by 

averaging (weighted for distance) the values of the four nearest pixels10. Then, the aspect and slope 

were calculated from the elevation map using ArcGIS 10.7.1. 

Landscape data collection: Two spatial scales were considered by creating buffers around the 

sample sites at medium (0-300 m) and long (0-3000 m) distances using "rgeos" package of the 

program R. Those two spatial scales were chosen to include ~10 and ~100 raster cells of 30-m 

resolution in every direction from the center of the sample site (0-300 m and 0-3000 m buffers, 

respectively). Within each of those spatial scales and for each soil and topographic variable, 

different metrics were evaluated: patch density (number of patches in the landscape, divided by 

total landscape area), patch heterogeneity (number of different values that are included in the 

corresponding buffer), range (subtraction of the lowest value from the highest value) and variance 

(average squared deviation from the mean) of independent values. Distance from the sample sites 

to the nearest transportation route (e.g., highways, county roads, and streets) and/or utility right-

of-way (ROW; e.g., pipelines and transmission lines) using ArcGIS 10.7.1. 

Statistical analyses: The R program was used to conduct all the statistical analyses for this study. 

First, the topographic and predicted edaphic information was extracted from the raster cells of the 

different GIS layers. Second, the absolute difference between the values obtained from ground-

verified data and GIS predicted data was calculated for each edaphic variable (sand, clay, silt, 
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organic matter, and pH). Lastly, the influence of the surrounding landscape at different spatial 

scales on the absolute differences between ground-verified and GIS values was evaluated using 

generalized linear models (GLMs). 

Before conducting the GLMs, the values of the predictor variables were standardized using 

the function “scale” of the program R, to make the interpretation of their effect sizes more 

comparable. GLMs with gamma errors were used because the variables were distributed with 

different degrees of positive skewness and, therefore, the residuals of the models did not follow a 

normal distribution11. In addition, lower AIC (Akaike information criterion) values were obtained 

using the gamma family, which makes the GLMs with gamma errors more parsimonious. To avoid 

collinearity problems, only non-correlated variables were included in the GLMs. Heterogeneity 

and patch density of the different edaphic variables were highly correlated in both spatial landscape 

scales (Pearson´s r > 0.4). The same applied to the range and variance of the evaluated edaphic 

variables (Pearson´s r > 0.64). Heterogeneity and range also were highly correlated in some 

edaphic variables within the different spatial scales. Therefore, heterogeneity and variance of the 

edaphic variables were included to build the models. As for topographic variables, only slope 

heterogeneity of the topographic profile was included in the models because a) elevation, slope, 

and aspect variables were highly correlated (Pearson´s r > 0.8), b) models including slope had 

lower AIC than those including elevation and aspect, and c) slope heterogeneity and variance in 

the landscape was highly correlated (Pearson´s r > 0.95). Lastly, distance to linear infrastructures 

(transportation systems and utility ROWs) was included in the models to evaluate the influence of 

road construction and maintenance on differences between ground-verified and GIS predicted 

values. Thus, the following equation was used to build the GLMs: 

|Difference ground vs. GIS data values| (a)~Edaphic heterogeneity(a, c) + Edaphic variance(a, c) + 

Topographic heterogeneity(b, c) + Distance to linear infrastructures 

where “a” is the corresponding soil variable (sand, clay, silt, organic matter, or pH), “b” is the 

slope of the topographic profile, and “c” is the spatial scale (buffer size of 0-300 m, or 0-3000 m). 

RESULTS 

There was high variability in absolute differences between ground-verified data and GIS 

predicted data values (Fig. 1a-e). In some instances, the soil values obtained from the field-
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collected samples were very different from those in the SSURGO database. For example, sand 

values differed ~ 40 % between ground verified data and GIS predicted data in 35 % of the sample 

sites (Fig. 1a). On the other hand, there also were some edaphic values that were very similar in 

both databases, as indicated by the near-zero first quartile values (Fig. 1b, d, and e). 

The variance of the edaphic variables obtained from GIS generally had a positive 

relationship with the absolute differences between our ground-verified data and the GIS predicted 

data values (Table 1). That is a higher variance among grid cell values in the SSURGO database 

generally correlated with greater disagreement between our field-collected data and the SSURGO 

data. 

In contrast, landscape heterogeneity (i.e., spatial patchiness in the GIS data) in edaphic and 

topographic predictor variables was generally negatively correlated with absolute differences 

between our ground-verified data and the GIS predicted data values. For the edaphic GIS data, this 

pattern was more prevalent at the larger spatial scale (0-3000 m). However, the effect size of 

edaphic variance, mentioned above, was generally stronger than that found for edaphic and 

topographic heterogeneity. 

Furthermore, the absolute differences between ground-verified data and GIS predicted data 

in sand and pH were lower when the sample sites were farther from the nearest transportation route 

and/or utility ROW (Table 1). Around half of the sample sites (n = 206) were within 50 m of the 

nearest linear infrastructure (transportation, pipelines, electricity transmission lines), making them 

susceptible to road construction and other ROW maintenance activities. 

DISCUSSION 

The results from this study demonstrate that ground soil data collected at a given spatial 

sample point can be very different from estimated soil properties produced by large databases as 

SSURGO, which collect soil data at scales ranging from 1:12,000 to 1:63,360 and use a polygon-

based prediction approach to generate polygon map units3. Therefore, while the production of soil 

maps at very large spatial scales enables more research opportunities, it could also be prejudicial 

for data accuracy because soil attributes such as soil texture, organic matter, and pH can be highly 

variable at small spatial scales1,2. 
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The surrounding edaphic and topographic landscape context were strongly correlated with 

the observed differences between ground-verified data and GIS predicted data at different spatial 

scales. Generally, landscapes with high variability in the evaluated edaphic attributes showed 

higher differences between ground and GIS data, as was initially predicted. Thus, the higher the 

variability of a soil variable in the landscape, the higher the chances to have a mismatch between 

field-collected data and data from GIS databases, such as SSURGO. 

Contrary to the initial expectations, there were generally lower differences between our 

field-collected data and SSURGO data in landscapes where GIS-based soil and topographic data 

were spatially more heterogeneous. This could be the result of there being greater samples taken 

to develop the SSURGO database from areas with more heterogeneous soils or topography. The 

SSURGO database is divided into polygon map units, which include soils and other components 

that have unique properties, interpretations, and productivity3. Thus, heterogeneous landscapes are 

more likely to be represented by a greater number of polygon map units, which should correspond 

with an increased number of soil samples taken in the area. 

Along these lines, it is expected that areas with greater topographic heterogeneity generally 

will have steeper or more heterogeneous slopes. Previous studies aimed at evaluating the spatial 

relationships between topography and soil attributes have found significant relationships between 

topography and soil characteristics12,13,14. For example, a study examined soil-terrain relationships 

within a GIS framework and found that variance in the thickness of both the A horizon and loess 

layers tended to be substantially higher (more than double) in areas with lower slopes, such as 

level ground or foot slopes of rolling terrain15. Such study also found that relationships among soil 

and topographic variables were highly dependent upon the pixel size of the GIS window used to 

calculate parameters such as topographic curvature, with the strongest correlations found at the 

smallest window sizes (3x3 grid cells). In other words, the study found that, as the area represented 

by each discrete sample increased, the relationships among parameters being estimated tended to 

weaken. This latter finding again suggests that areas with greater sampling density in the 

development of digital soil databases ought to have greater correspondence, on average, with 

randomly collected field data. 

In our study, proximity to roads also had a great effect on the absolute differences between 

ground-verified and GIS predicted soil pH and sand content data. Such differences were generally 
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higher when the sample sites were nearer transportation routes and/or utility ROWs. This finding 

could suggest that road construction and maintenance activities increase the spatial variation of 

soil properties due to soil disturbance, soil movement, or import of large amounts of soil16,17, 

which, in turn, decrease the prediction accuracy of soil properties using GIS polygon map units, 

such as those provided by the SSURGO database. 

CONCLUSION 

This study shows that the surrounding land use and edaphic and topographic landscape 

highly influence the degree of similarity between ground-verified data and GIS predicted data for 

commonly used soil variables (particle size composition, organic matter content, and pH). The 

prediction accuracy of soil properties with GIS techniques decreased in landscapes with more 

variable edaphic attributes, whereas accuracy unexpectedly increased in more topographically and 

edaphically heterogeneous landscapes. These findings may have important implications for 

models that incorporate georeferenced soil data. Thus, this study will improve research conducted 

at multiple spatial scales. 
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FIGURE 1a-e. Boxplots indicating the absolute differences between ground-verified data and GIS 

predicted data values for each edaphic variable.  
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Table 1. Generalized linear model outputs showing the correlation of the surrounding landscape 

on absolute differences between ground-verified data and GIS predicted data values.  

Spatial 

scale 

GIS-based 

landscape 

variables 

Model 

coefficients 

Soil attributes 

Sand Clay Silt 
Organic 

matter 
pH 

0-300 m 

Soil attribute 

heterogeneity 

Estimate -0.02 -0.14 +0.05 -0.03 -0.02 

Std. Error 0.03 0.04 0.04 0.04 0.06 

P-value 0.53 0.001 0.16 0.56 0.75 

Soil attribute 

variance 

Estimate -0.03 +0.26 +0.09 -0.08 +0.09 

Std. Error 0.03 0.05 0.04 0.04 0.05 

P-value 0.32 <0.001 0.02 0.06 0.04 

Topographic 

heterogeneity 

Estimate -0.10 -0.05 -0.16 -0.07 +0.06 

Std. Error 0.03 0.04 0.04 0.04 0.04 

P-value 0.001 0.23 <0.001 0.12 0.18 

Distance to 

transportation 

systems and 

utility ROWs 

Estimate -0.06 +0.01 -0.07 +0.02 -0.26 

Std. Error 0.03 0.04 0.04 0.04 0.048 

P-value 0.03 0.80 0.07 0.63 <0.001 

0-3000 m 

Soil attribute 

heterogeneity 

Estimate -0.10 -0.09 +0.002 -0.04 -0.11 

Std. Error 0.03 0.04 0.04 0.04 0.05 

P-value <0.001 0.02 0.95 0.28 0.01 

Soil attribute 

variance 

Estimate +0.03 +0.28 +0.18 -0.18 +0.15 

Std. Error 0.03 0.05 0.04 0.04 0.05 

P-value 0.33 <0.001 <0.001 <0.001 0.001 

Topographic 

heterogeneity 

Estimate -0.08 -0.02 -0.11 -0.17 +0.12 

Std. Error 0.03 0.04 0.04 0.04 0.04 

P-value 0.006 0.72 0.004 <0.001 0.002 

Distance to 

transportation 

systems and 

utility ROWs 

Estimate -0.04 -0.003 -0.05 +0.03 -0.24 

Std. Error 0.03 0.04 0.03 0.04 0.04 

P-value 0.14 0.95 0.15 0.47 <0.001 

Footnote: Positive and negative estimates with p-value < 0.05 are shaded light and dark grey, respectively. Each soil 

attribute was tested with edaphic landscape data of the corresponding attribute, topographic landscape data, and 

distance to transportation systems and utility ROWs, at two spatial scales (0-300 and 0-3000 m). Topographic 

heterogeneity refers to the slope heterogeneity of the topographic profile. 


