

KES: Knowledge Enabled Services for better EO Information Use

Andrea Colapicchioni Advanced Computer Systems Space Division a.colapicchioni@acsys.it

The problem

- During the last decades, the satellite image catalogues have stored huge quantity of data
- State of the art catalogues permit only to specify location, time of interest, metadata like platform, sensor, acquisition mode...

The interpretation task

- The interpretation of EO images requires
 - Fusion of data/information for better understanding of structures
 - Aggregation with existing knowledge specific to the application fields (at higher level)

A little bit of history..

- 1996-2000 IIM (Image Information Mining) (<u>http://isis.dlr.de/mining</u>)
- 2001: KIM (Knowledge Information Mining) (<u>http://www.acsys.it:8080/kim</u>)
- 2002: KES (Knowledge Enabled Services)
- 2003: KIMV (KIM Validation)
- 2004: KEO (Knowledge-centred Earth Observation)

KIM: Knowledge Driven Information Mining

More in detail

KIM Interactive learning

1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
- trape	e de les de les de les de	r d" Ch producial Map	2
1			2
			*
WAR STOR			
Zoom		Telematan F	
A CONTRACTOR	* Learn Mode	Name:	
+		Deenate	

From data to semantic

From KIM to KES (Knowledge Enabled Services)

- Image interpretation is not a simple task. Each user needs a set of accessory data, as for example GIS layers or texts obtained through Internet.
- Yet, the amount of available information makes searches a demanding and expensive task.
- An environment where images are at the focal point, and where each user can navigate through a taxonomically structured knowledge, could be of extreme value.

IGARSS 2004 - Image Information Mining

KES: New interface

& Kes Client 1.0 seducese Feature Definition Search Incopes Sensenic Definition Set Feature or Category Map press Provine Toom Retrect - 1 (None) Zoore out Relati · Maa navigation * Probability Separability Coverage ROI selecter Dock Lasers Advanced Area Set Satellites and/or Sensors Set Collection * Landont 8- Rader (All collections) · Isones Optical Negal PHE Provence - Presence Sectional e Ers likencis Steart & Smart Mecanihique Test @ www.dota (* mished Search results Name Collection N. Insertion Date LatCenter LatDown. La Imgeo_282_1_6 SwDenand 28-ma-2812 47.125 Imgeo_282_3_1 SwDenand 28-ma-2812 48.186 46,907 48,907 48,073 48,073 Switsmand 28-mar-2002 41,84 47,84 twge0 381 2 1 47.883 Bwittenand 28-mai-2003 47,939 47,739 47,806 tyngen 383.2 Switterland 28-mar-2662 twigoo_282_2_4 47,416 47,373 47,373 Switterland 28-mar-2662 47,263 47.1.8 47.14 trigos_281_2_4 tvigeo_281_2_6 Bwitteriand 28-mar-2002 47.139 46,907 46,907 Bwitterland 28-mar-2012 48,166 48,073 48,073 by1000 201 47.64 47.64 triges_281_3_3 Bartterland 28-mar-2012 twoeo 201 3 3 Switterland 21-mar-2002 47,726 47.909 47,606 trigeo_291_3_4 Bwitterland 28-mar-2661 17.416 47,373 47,373 47,14 trigeo 281 3.5 Bwitzerland 28-mar-2002 trigeo 281 3.6 Bwitzerland 28-mar-2002 47.14 47.343 47,829 40,907 46,907 Dete **Dourding lass** trigeo_282_4_1 Switzerland 28-mar-2662 49,196 48,073 48,073 Imgeo_292_4_2 Switterland 28-mar-2002 47.683 47,94 47.94 Upper left beand (Lat.Lord) Imgeo_292_4_2 Switterland 28-mar-2002 47,728 47,935 42,606 01.001 0.002 triges_382_4_4 Switseiand 38-mar-3883 47,458 47,373 47.212 FIGHT 19710101 at 12 KETO PM CPT Lower right bound (LotiLor) triget_381_4_5 Swrberland 33-mar-3663 87382 4714 17.14 CIIIC-scm-IC breisetwic 3_3_CHC_cepted 47.838 45.907 48.90T 03.00 181.00 To: 2004.05.11 a112.01.00 PM CEST Imper_391_5_2 Switerland 38-mar-3882 Imper_393_5_2 Switerland 28-mar-3882 67,882 47.98 47.94 47,005 47,739 47,606 0 tinges_282_5_4 Dwitzerland 28-mar-2682 47,458 47,373 47,212 trogeo_182_5_5 Gwitterland 28-mar-2082 47,282 41,14 47,14 Textual annotations Rosult size Imper_312_5_6 Switzenland 21-mar-2012 47,839 46.937 48,90T Imges_282_5_7 Switzerland 28-mai-2012 40,755 46,673 48,673 Result size: 51 stgeo_282_6_2 Switzerland 28-mar-2002 47,582 41,84 47,04 tinges_282_6_5 Switzerland 28-mai-2003 47.730 47,635 47,606 Store query parameters Search 31299 282 5 4 Switzenand 23-mar-25 quackCare # \$7.373 47.313 Stored Queries list: Fare Tracking -Results number:50 --1 · Oetails 1 0 3 2-~ 🛄 🖯 🔁 🖄 🗰 🗰 🗒 🕸 🏟 📽 🍇 💊 2 Million. 🔹 🔡 Lanok og . 🛛 🗃 Henselt Pa. 🔁 Ciljerunen... 🔮 Googe R.c. ... 🎽 195 Stordert Lt II C B 20 20 20 20

Semantic Grouping

- In KIM it is simple to define a feature by identifying a river through positive and negative examples.
- However, the "river" might become part of a wider concept (e.g.: water). This should be implemented without retraining the system for all possible water types.

Aggregated Features

- In KES a new kind of grouping, called "aggregated features", has been introduced.
- In a similar way as in defining positive and negative examples on the image, it will be possible to define the concept "water" as:
- Positive examples:
 - sea + river + lake + water reservoir
- Negative examples:
 - streets + houses + mountains

IGARSS 2004 - Image Information Mining

Ontology

 Ontology is the specification of a conceptualisation. It can be related to a system (System Ontology, which can be domain independent and reused for different domains) or to a domain (Domain Ontology, specific for that domain).

Domain Ontology

- Domain ontology is the set of definitions and concepts pertaining and belonging to a specific domain (and shared by concerned people).
- Different domains have generally different ontologies. As an example, a climatology expert could have a different vision of (and terms to describe) water compared to that of an oceanography expert.

Data / Semantic / Ontology

Implicit and explicit knowledge transfer

- The KIM prototype permits to associate weighted combinations of primitive features to image features. While defining features, the user explicitly transfers knowledge to the system, which is stored and made available to the same or other users.
- In addition there is a further type of knowledge (implicit) that could be discovered: if the user domain of interest is known, by observing the user interactions with the system during search and browsing, it is possible to infer the data of likely user interest and link it with the pertinence domain.

Knowledge transfer

Knowledge Graph

Knowledge Discovery

Exploring this graph means discovering the user's knowledge

KIMV (KIM Validation)

A practical case study: Automatic cloud classification in MERIS images

Cloud Cover Characterization

MERIS Level 1 – Reduced Resolution

Cloud cover characterization

Map of Cloud object

MAP Object Extraction

Binarized, closed MAP of "cloud" label

Tiling

MASS

Mass Portal							
+oPortaBlome						R e gister	Login
			Catalogue Search				
Collections:	WMS Services: (Citck here to add a WMS) Demis World Map [1.1.0] WMS Layers:		Trappeders La Vela				
Franci 2003 v Jan v 01 v To: 2004 v Jan v 01 v Cloud Cover Percentage: 50 Retrieve 10 metadata Starting from 1	WNS Styles: Update map Clear map Scale: 250 km		Bearch Reat	Valots Valots			a.
Product Identifier	Collection	Platform	Acquisition Date/Time	Satellite Domain		Graphical Overview	<u>^</u>
C EN1-03031109214865- 31700.RR1	ACS.MERIS.CLOUD	Envisat-1	2003-03-11709:21:48.652	Orbit: Orbit: Direction: France: Track:	5372 decoending 100 308		
C EH1-03052009205776- 31799.RR1	ACS.MERIB.CLOUD	Envisat-1	2003-05-20109:20:57.762	Orbit) Orbit Directions Frances Tracks	6374 descending 5605 308		
C EN1-03090209213176- 31799.RR1	ACS.MERIS.CLOUD	Envisat-1	2003-09-02709:21:31.762	Orbit: Orbit: Directions Frame: Tracks	7877 descending 4484 208		

Start Request 12:12:6,187, Saved AOI 12:12:6,453, End Request 12:12:9,234, Total dur.: 3.047, Save AOI: 0.266, Search: 2.781

Linux Cluster

- Cluster nodes: 10 Dell 1750, dual Xeon 3 GHz
- Database and Application Server: Dell 6600, 4 Xeon 2.8 GHz

System Context

KIM prototype

http://www.acsys.it:8080/kim

Andrea Colapicchioni
<u>a.colapicchioni@acsys.it</u>

Visit the ACS stand for a demo