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Abstract 

 

Unexpected technical issues such as engine and transmission failure represent critical Reliability, Availability, and 

Maintainability (RAM) issues for military ground vehicles. It is essential to keep the vehicles in healthy condition and 

to provide predictive maintenance that enables efficient diagnosis and repair of vehicle failures, reduces associated 

operation/sustainment costs and vehicle downtime, and supports predictive logistics for critical components. This 

paper develops a predictive model for early fault detection using a machine learning (ML) algorithm trained by a real 

vehicle data set. The ML model is built on various operational time series sensor data and fault codes collected via a 

Digital Source Collector and a CAN bus device for several vehicles over extensive time intervals. The approach 

proposed here is an ensemble learning of a multivariate Long Short-Term Memory (LSTM) neural network for 

operational data forecasting based on select channel data such as coolant temperature, engine oil temperature/pressure, 

and battery voltage with respect to the driving status. The LSTM model can use recorded parameters to classify vehicle 

or component reliability and health. For further improvement of prediction accuracy and generalization of the model 

across various vehicle types, multiple independent LSTM models are trained over training/validation datasets from 

the randomly subsampled period of a single vehicle or those from the same families of vehicles. Outputs from the 

individual networks are then linearly combined to produce the output of the ensemble network. The analysis shows 

better prediction accuracy than the single LSTM approach, providing promising early fault detection performance. 
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1.  Introduction  

Monitoring trends and analyzing patterns in data of a complex system such as military ground vehicles can provide 

insight into the health status of a vehicle by enabling the prediction of component fault or failure in one vehicle or 

even over a fleet. Anomalies or outliers in operational data that fall outside the normal operational profile of a vehicle 

can represent performance issues, wear, or symptoms of imminent component failure that require further investigation. 

It is crucial to detect such anomalies, present in the time series sensor data, to provide decision support for operations, 

maintenance, and logistics. Recently, various deep learning models have been proposed for detecting anomalies in 

time series data, including autoencoder (AE), Long Short-Term Memory (LSTM), recurrent neural network (RNN), 

convolutional neural network (CNN), and hybrid approaches such as CNN-AE, with some challenges including lack 

of defined pattern of anomaly, noise in the data, and irregular size of the time series[1]. In this paper, we propose a 

method to detect abnormal periods in multi-channel sensor data of vehicles based on Long Short-Term Memory 

(LSTM) neural networks by differentiating the predicted time series values by the model trained over a normal period 

of time and the observed values. Here, the normal period of time is gathered from the time series data associated with 

the maintenance log data. Maintenance logs are searched for service or repair of critical components such as batteries, 

engines, or transmissions to establish a time interval surrounding logged faults. The time series data, before and after 

the maintenance event, is then classified as normal and abnormal operation. The rest of the paper is organized as 

follows. Section 2 describes how we selected the training/validation data for machine learning algorithms. Section 3 

briefly describes the LSTM network and ensemble learning. Section 4 details overall simulation procedures and 

prediction results, followed by the conclusion section. 
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2.  Problem Description 

2.1 Data Selection 

The time series data used in this paper is collected from more than 3,000 US Army ground vehicles of various types, 

each with over 100 sensors, with associated maintenance event data, curated at the US Army Engineer Research and 

Development Center (ERDC)[2]. The sensor data includes various signals, such as temperature, pressure, and RPM, 

at operation conditions recorded at 1Hz frequency via Digital Source Collector (DSC) and fault signals recorded via 

Controller Area Network (CAN) bus. Maintenance data consists of scheduled and unscheduled maintenance logs that 

include the type of failure, type of correction, labor hours, and costs. It should be noted that all data are associated 

with date and time information providing hashed vehicle identification number (VIN) with associated metadata. 

Sensor and maintenance data were independently collected, leading to instances that are not perfectly matched in 

terms of vehicle or time. Training and validation data were chosen, therefore, based on the availability of the 

operational/fault sensor data and relevant maintenance event documents, as shown in Figure 1.  

 
Figure 1. (a) number of available daily logs of individual vehicles with indication (red circle) of the top ten most 

daily used vehicles (b) stacked bar chart with respect to various fault source types for the top ten vehicles (c) stacked 

bar chart with respect to various maintenance action type for the top ten vehicles with no available data for 

VIN00905, VIN01090, VIN00907, and VIN00966 (d) Word cloud for overall maintenance actions in subfigure (c).  

Note subfigures (c) and (d) are reverse ordered for better visual comparison of subfigures (b) and (c). 

Figure 1(a) depicts the number of daily records that contain the operational 1Hz stream of data from various sensors 

in individual vehicles, where the red circle indicates the top ten most used vehicles. Specifically, VIN00905 (model 

21, Family 3), VIN01090(Model 28, Family 3), VIN00907 (Model 21, Family 3), VIN02628 (Model 84, Family 8), 

VIN01661 (Model 62, Family 4), VIN00966 (Model 20, Family 3), VIN01628 (Model 58, Family 4), VIN01546 

(Model 58, Family 4), VIN01554 (Model 58, Family 4), and VIN02659 (Model 87, Family 7) were operated 456, 

404, 381, 366, 361, 358, 350, 349, 348, and 347 times, respectively, during the data collection period. Note that the 

1st-3rd,4th and 7-9th fall under the same families, Family 3 and Family 4, respectively, while 1st,3rd and 7-9th vehicles 

are the same model, Model 21 and Model 58, respectively. The overall fault counts with respect to different fault 

types, such as transmission, engine, brakes, and tires, for the select top ten most daily used vehicles are shown in 

Figure 1(b). Likewise, the overall maintenance counts concerning the different actions performed during maintenance 

events for the identical vehicles are shown in Figure 1(c). As aforementioned, collections of sensor data and 

maintenance logs were performed independently, so maintenance data for some vehicles are unavailable. Such 

examples include VIN00905, VIN01090, VIN00907, and VIN00966. To give an example of maintenance action, a 

word cloud of overall maintenance actions of the ten vehicles is plotted in Figure 1(d), where frequent words are 

gradually enlarged and emphasized with orange color. Several observations can be made here. First, the most fault 

signals are from transmission (45%, 6377 out of the total faults 14194), followed by engine (24 percent). The primary 

(a) (b) 

(c) (d) 
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fault source for the select vehicles is the transmission, while the number of engine faults was greater in VIN00907 

than in other units. Second, ‘Replaced’ takes the majority in the maintenance actions as 51 percent of the total 385 

actions. Finally, a low fault count does not necessarily mean that the vehicle has continuously operated in normal 

conditions. For example, VIN02628 and VIN02659 that show low fault source counts had significant maintenance 

events. These analyses tell us that the vehicles of choice are sufficiently representative of the entire vehicle collection, 

as it provides a sufficient about of various fault types and maintenance events for ML training of the model. 

2.2 Identifying training and test data using maintenance logs 

For supervised learning, it is critical to have quality training data. It holds true for supervised anomaly detection in 

time series data like sensor signal processing. Even though the operational time series data are not explicitly tagged 

with the health status of the components or vehicle as a system, fault sensor data provide such information. Moreover, 

information in the maintenance logs also helps identification of normal operations by correlating replacement or repair 

actions with the relevant sensor signals. For example, the battery voltage signal may appear different before and after 

the replacement of the component due to its failure, and engine-related service or repair can be correlated with the 

signals such as engine load and coolant/oil temperature. Therefore, the operational sensor data can be effectively 

divided into two groups of data periods before and after a component is repaired or replaced with an assumption that 

the well-trained model over a normal operation period can identify an abnormal period by differentiating the prediction 

of the supposedly normal operation from the actual signal profile. As an example, Figure 2 shows the time when 

battery replacement occurred over the exact timeline of maintenance and the measured voltage signals.  

 
Figure 2. (a) Maintenance timeline of VIN02628. Each color marker indicates the maintenance action type. Unfilled and 

filled markers indicate the diagnosed date and repair date, respectively. Descriptions with the repeat of ‘H’ or ‘$’ indicates 

labor and expense, respectively, followed by fault description and correction narrative. (b) Battery voltage level whose 

DateTime is aligned with the maintenance timeline. The green/blue box indicates the data used for training and testing, 

respectively. Test data include those collected before and after the battery was replaced. (c) Zoom-in view of the daily 

signal after the first operation (left: battery voltage, right: accelerator pedal position) 

Specifically, Figure 2(a) visualizes the maintenance timeline for different maintenance action types. As the distance 

between filled and unfilled markers indicates, some maintenance tasks, such as inspections and replacements, require 

a longer time to complete the correction actions than the services (green markers).  The red dash line denotes that the 

battery was replaced on 8/9/2013, and it can be seen that the battery was replaced during an unscheduled maintenance 

period, as it is done after the service period. The red line extends to Figure 2(b) that is the actual battery voltage signal 

profile arranged to match the maintenance timeline. As a green and blue box indicates, we separated the data into 

training data six months before the month when the battery was replaced and test data of the month the battery was 

replaced and a month before (two months for the test). It should be noted that six months period for the training is 

arbitrarily set, the different duration can be used. Also, the data of other vehicles in the same family can also be used 

for training. One important consideration for machine learning training is timestamp information of the associated 

signal. As shown in Figure 2(c), daily operations may include multiple short-time operations instead of a single, long 

period, so training awareness of such information that represents the potentially arbitrary time intervals between the 

operations will improve prediction accuracy.  

battery replaced on 8/9/2013 

Training 

(a) 

(b) 

Test 

(c) 
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3.  Ensemble Learning using the Long Short-Term Memory Model (LSTM) 

Long Short-Term Memory (LSTM) neural networks are deep learning networks that use information from the past to 

address time dependency in the signal. LSTM overcomes the limiting tendency of recurrent neural networks (RNNs):  

to learn long-term dependencies due to the vanishing of the gradient values during the back-propagation process. 

Unlike RNNs that use only the immediately previous state obtained through the feedback loop, LSTMs utilize memory 

cells and three types of gates known as ‘forget,’ ‘input,’ and ‘output’ to control the flow of information into and out 

of the cell, allowing it to remember values over long-time intervals. We refer the interested reader to [3] or [4] for 

detailed definitions of how LSTM networks are used in anomaly detection. Like many other neural networks, LSTM 

can be used for classification and regression. We used the LSTM for regression here. Often, the trained network does 

not correctly respond to novel, unobserved inputs outside of the training dataset, which are called “overfitting” issues. 

These issues can be addressed by appropriately sizing the network and tuning hyperparameters. Furthermore, the use 

of the validation set, a portion of the training set, also helps avoid these issues by keeping the parameter values at the 

iteration with the best validation error during the training. To further reduce overfitting and achieve generalization, a 

dropout layer can be added to the LSTM layer as a stack. Dropout is a type of regularization method widely used in 

convolutional neural networks, especially for image classification applications, but dropout is also applicable as an 

LSTM layer. It randomly sets the weight parameter values in the hidden neurons to zero with a given probability value 

between 0 and 1 with a proper rescaling of the remaining neurons’ values at each training iteration[5]. Higher number 

results in more elements being dropped during the training. As the dropout is only used during training, it is treated as 

a linear layer, simple direct mapping inputs to outputs, at prediction. Ensemble learning is a method that generates 

several models that are combined to make a prediction used in either classification or regression problems [6], which 

is typically composed of three steps; model generation (construct redundant models),  model pruning (eliminating 

some models based on the performance) and model integration (combine the remained models). In this work, we 

linearly combined the outputs of several LSTM models through simple average. 

4.  Results  

4.1 Data access and Preprocessing 

Timestamped multi-channel sensor data were fetched from MongoDB in the Data Analytics and Visualization System 

(DAVS) framework, an outcome of a joint research program sponsored by the US Army ERDC, between Mississippi 

State University, and Hottinger, Brüel and Kjaer Solutions, LLC (HBK)[2]. Data accessing, preprocessing, training, 

and predictions were conducted using MATLAB software (version 2022a). Due to CAN bus architecture and the 

digital source collector interface, the data collected from the sensors infrequently contains measurement errors, 

timestamp mismatches, or unsynchronized timestamps among different sensor channels collected during the same 

time interval. Therefore, cleaning and imputation are required for machine learning training. First, after the database 

query return, the raw data are cleaned by removing ‘not-a-number’ or missing values and corresponding timestamp 

data. Similarly, out-of-sync data/time stamp pairs are simply removed. In the case of multi-channel data, only the 

subset of sensor channels that are perfectly matched in time is selected. Second, using auxiliary speed-related data, 

such as vehicle speed or acceleration pedal position data, we obtain the time point when the vehicle is first operated 

during a day and exclude the data from that point until 300 seconds after this initial time point, to account for engine 

warm-up. Third, smoothing is performed on the data to further reduce potential sensor errors and uncertainty. The 

straightforward choice is moving average using a fixed window length where the sliding window over the given data 

outputs the average over the elements within each window. Finally, all preprocessed operational sensor data are 

normalized to have zero mean and a unity standard deviation in order to process multidimensional sensor data with 

different ranges of values.  

4.2 Parametric study 

We performed a series of simulations to find an optimal network structure and setup that give minimum training and 

test error between the prediction and ground truth data while seeking maximum deviation over the abnormal period 

by varying the input type or changing the network setup. The training/test dataset used for this study is the battery 

voltage signal and corresponding timestamps for VIN02628 collected between 01/01/2013-06/30/2013 and 

07/01/2013-08/31/2013, which are 516,080 data points from 83 daily logs and 41,837 from 18 logs, respectively. The 

detailed hyperparameters of interest are listed in Table 1. As to the neural network structure, the hyperbolic tangent 

is used as an activation function across all hidden units in LSTM and a dense layer, a linear activation function for the 

final output layer. To correctly measure the performance improvement, all simulations except the ensemble learning 

results were performed with a random seed, which accounts for initial parameter values and validation set selection, 

held fixed. For the same reason, the number of epochs was held fixed at 400, the number of neurons for the LSTM 

layer in this work is 32, and the batch size of 128. Increasing the number of neurons or epochs exhibits marginal 

improvement in the prediction while increasing the training time. The final LSTM stack comprises five layers; input 

layer, LSTM layer, dropout layer, fully connected layer, and output layer. Regarding the performance metric, there 
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are a few choices, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute 

Percentage Error (MAPE) for a degree of dissimilarity between the prediction and the ground truth, while R2 value 

for the degree of similarity. Here, we chose MAPE, 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

�̂�pred−𝑦true

𝑦true
| ⋅ 100, for throughout the comparison 

because of its intuitive interpretation in terms of relative error. We confirmed that other metrics follow a similar trend. 

Table 1 compares prediction performances of various configurations using the entire training set, test set, and daily 

maximum in terms of MAPE obtained on the signal each day. As seen in the first and second cases, increasing the 

default initial learning rate improves the test MAPE by a factor of two, even though the max error decreased. The 

second case is preferred because minimizing low overall training/test errors is more important than maximizing the 

max daily error to capture anomalies more accurately. Likewise, employing the dropout layer with a lower probability 

decreases the overall error. Next, as LSTM can handle multiple input channels, the associated time information is 

combined with the sensor signal data as inputs to the input layer of the LSTM for training. This approach achieves 

better performance for all three criteria (low training/test and high daily max) over the single channel results. The 

window size of the moving average during preprocessing also affects the final prediction accuracy as it simplifies the 

problem itself by suppressing sensor errors and uncertainty. As window size increases from 11 to 51 to 101, the 

predictions get closer to the preprocessed data quite rapidly, especially for the training data. Reserving a portion of 

training data as a validation set further improves overall prediction accuracy as well. Finally, ensembling multiple 

LSTMs based on the same dataset but different compositions of validation data further enhances the accuracy. Here, 

we choose the three best models out of ten different models by random selection of validation set and combine the 

final outputs of all networks by averaging. As the last three results indicate, the more validation data is shuffled for 

ensemble learning, the better generalized the combined model is. 

Table 1. Parametric study results using VIN02628 battery voltage level data. (1-channel: sensor signal, 2-channel: sensor 

signal with relative time information, MA(•): moving average with window size, 3 models: Ensemble of 3 best models, 

#iter: the number of iterations, lr: initial learning rate, and 𝑃𝑑𝑜: dropout probability) 

Input data type Network setup Training MAPE 

Avg. error (↓) 

Test MAPE  

Avg. error (↓)   

Test MAPE 

Max error (↑) 

1-channel, MA (11) lr=0.001, no dropout layer 0.099639 0.87649 13.2455 

1-channel, MA (11) lr=0.01, no dropout layer 0.098302 0.46027 4.8844 

1-channel, MA (11) lr=0.01, 𝑃𝑑𝑜=0.5 0.099839 0.46051 5.5682 

1-channel, MA (11) lr=0.01, 𝑃𝑑𝑜=0.2 0.098505 0.43063 4.6116 

2-channel, MA (11) lr=0.01, 𝑃𝑑𝑜=0.2 0.098720 0.42507 5.0491 

2-channel, MA (51) lr=0.01, 𝑃𝑑𝑜=0.2 0.029032 0.25875 4.6764 

2-channel: MA (101) lr=0.01, 𝑃𝑑𝑜=0.2 0.016665 0.37185 7.4298 

2-channel: MA (101) lr=0.01, 𝑃𝑑𝑜=0.2, 10% valid. 0.015974 0.37073 7.4213 

2-channel: MA (101), 3 models lr=0.01, 𝑃𝑑𝑜=0.2, 10% valid. 0.015616 0.35968 7.2456 

2-channel: MA (101), 3 models lr=0.01, 𝑃𝑑𝑜=0.2, 20% valid. 0.015656 0.37219 7.4675 

2-channel: MA (101), 3 models lr=0.01, 𝑃𝑑𝑜=0.2, 30% valid. 0.015450 0.33801 6.8575 

The computational time for training mainly depends on the number of iterations and the number of neurons in the 

LSTM layer. Most cases in this work were completed within 5 minutes when training on NVIDIA GTX 1660 TI GPU, 

and the prediction time for the test time series was less than milliseconds. 

4.3 Prediction results 

The prediction results on the test dataset are compared with the measured signals for two vehicles, VIN02628 and 

VIN01628, without the timestamp information in Figure 3(a) and (b), when the last trained model in Table 1 is used. 

Note that the prediction on the plot for the training data is omitted because the MAPE for the training data set is as 

low as less than 0.02 percent on average. Overall prediction for the test set matches well with the measured data until 

the battery levels drop significantly and stay low. Below, the per-day MAPE values are plotted piecewise to match 

the axis of the prediction plot. A simple threshold would detect the onset of the abnormal behavior of the battery. With 

a one percent error threshold for “Level 1” and five percent for “Level 2”, the algorithm detected the early symptom 

as soon as seven and two operation days before the replacement. As final validation, the overall prediction results of 

a few vehicles at the full datetime range are turned into the severity level daily profile using the two threshold levels, 

as shown in Figure 3(c). The first two cases, as expected, well detect prognostic symptoms before the replacement. 

No abnormal signal is captured for VIN01090, while VIN00907 does have a few anomalies during the period. As 

shown in Figure 1(c), no maintenance log is available for the vehicles, but the zoom-in view of the battery voltage 

signal on 01/14/2014 at the “Level 2” point confirmed that the voltage dropped significantly during the operations of 

the day. As described in this section, our ensemble LSTM model trained only on single vehicle data (VIN02628) 

successfully detected the abnormal operational behaviors of multiple vehicles due to the battery problem. 
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Figure 3. (a) Prediction on VIN02628 using the model trained using the data of the same vehicle (b) Prediction on 

VIN01628 using the model trained using the data of a different vehicle (VIN02628). (c) Daily severity level profile for 

select vehicles. Black star: battery replacement. For VIN00907, the battery signal on 1/14/2014 is shown in zoom-in view. 

5.  Conclusions   

The primary objective of this research was to provide an efficient predictive approach for the early detection of fault 

and failure in army ground vehicles. This study addressed the issues caused by no maintenance annotations and 

heterogeneous data sources. To resolve the issue in an efficient way, this paper utilized maintenance event information 

to identify the normal conditions on operational time series data as a training database for supervised learning using 

the LSTM algorithm. The prediction results showed training a model does not necessarily require the data for the same 

vehicle. A pre-trained model using a single vehicle’s training database successfully discriminates the predicted signals 

from abnormal periods of other vehicles that are not in the training database. This is particularly useful for the scenario 

when training data is unavailable; a pre-trained model can be imported for prediction or to retrain the networks with 

a new dataset. As for future work, the proposed approach will be generalized by extending it to other components, 

such as engine and transmission, and validated not only on select vehicles but also on many other vehicles in the 

database to demonstrate its capacity and potential for better supporting predictive maintenance of army ground 

vehicles. 
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