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a b s t r a c t

Recently, bio-inspired algorithms have been increasingly explored for autonomous robot path planning
on grid-based maps. However, these approaches endure performance degradation as problem com-
plexity increases, often resulting in lengthy search times to find an optimal solution. This limitation
is particularly critical for real-world applications like autonomous off-road vehicles, where high-
quality path computation is essential for energy efficiency. To address these challenges, this paper
proposes a new graph-based optimal path planning approach that leverages a sort of bio-inspired
algorithm, improved seagull optimization algorithm (iSOA) for rapid path planning of autonomous
robots. A modified Douglas–Peucker (mDP) algorithm is developed to approximate irregular obstacles
as polygonal obstacles based on the environment image in rough terrains. The resulting mDP-
derived graph is then modeled using a Maklink graph theory. By applying the iSOA approach, the
trajectory of an autonomous robot in the workspace is optimized. Additionally, a Bezier-curve-based
smoothing approach is developed to generate safer and smoother trajectories while adhering to
curvature constraints. The proposed model is validated through simulated experiments undertaken
in various real-world settings, and its performance is compared with state-of-the-art algorithms. The
experimental results demonstrate that the proposed model outperforms existing approaches in terms
of time cost and path length.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of ShandongUniversity. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Autonomous robots have found wide-ranging applications in
arious domains of our daily lives, including autonomous ve-
icles [1–5], medical robots [6], agriculture robots [7,8], and
mergency response robots [9–11]. Robot path planning, a fun-
amental research area in robotics, has garnered considerable
ttention and research efforts over the past few decades [12–16].
he primary objective of path planning is to determine a collision-
ree trajectory that enables a robot to navigate from its initial
osition to its target position while effectively avoiding obstacles
17,18]. In this context, bio-inspired and evolutionary algorithms
ave emerged as powerful optimization methods, showcasing
heir effectiveness and success across diverse robotics areas.

Environmental modeling with robots is a crucial component
hen utilizing bio-inspired algorithms for autonomous robot
ath planning (Fig. 1). Most existing algorithms employ grid
aps to facilitate path planning [19–23]. The resolution of a grid
ap determines the size of individual grids in the real-world
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(http://creativecommons.org/licenses/by/4.0/).
environment. Higher resolutions result in more precise maps
with increased grid density, yielding more accurate planning
outcomes [24]. However, approaches relying on point-to-point
traversal experience more expensive computational efforts as the
number of grids escalates, and conversely, reduced grid numbers
lead to faster planning times. While this pursuit of precision
is essential, it often translates to significant time requirements
when employing bio-inspired algorithms for robot path plan-
ning, which is particularly problematic in time-sensitive real-
world applications like search and rescue robots in rough terrains
[25–27]. Therefore, achieving rapid and high-quality path plan-
ning assumes utmost importance, aiming to save valuable time
and optimize the limited onboard power resources [28].

1.1. Related work

Over the past few decades, numerous methods for autonomous
robot path planning have been proposed, such as artificial po-
tential fields [30,31], sampling-based algorithms [32,33], graph-
based models [34–36], and bio-inspired algorithms [37–45].

Artificial potential fields (APF) [30,31] refer to a set of tech-

niques that employ point-to-point traversal path planning. This
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Fig. 1. Environmental modeling as a 2D map. (a) Grid-based Map. Each grid on a grid-based map corresponds to a free or occupied state (obstacle) shown by 0 or 1,
espectively. (b) Tangent-based graph map. The graph’s nodes stand for common tangent points found on obstacle boundaries, while its edges represent collision-free
ommon tangents connecting the boundaries, and convex boundary segments lying between those tangent points [29].
lass of methods can be categorized into two distinct types.
irstly, the object moves through a field of forces, with the target
erving as the attractive pole and obstacles generating a repul-
ive force that reduces as the distance between them increases.
econdly, the field of forces is established by a specific gradient
rom the beginning point to the endpoint. Nonetheless, these
lgorithms may encounter a local minimum, rendering them
ncapable of identifying the optimal path. In addition, various
olutions have been developed to tackle this issue. Szczepanski
t al. [30] developed an artificial potential field driven planner by
ugmented reality in which the algorithm anticipates an immi-
ent local minimum and then leverages the enhanced perception
f a mobile robot to circumvent it. Due to the absence of stagna-
ion in local minima, the proposed method allows the generation
f shorter paths compared to jumping techniques. Orozco-Rosas
t al. [31] proposed an improved APF method, which integrates
embrane computing with genetic algorithm and APF method to

ind parameters to generate feasible and safe paths.
Sampling-based algorithms, such as the Rapidly Exploring

andom Tree (RRT) and (PRM) algorithms, construct trees in-
rementally using randomly selected samples from the search
pace [32]. These trees typically expand towards unexplored
egions. Arslan and Tsiotras [46] proposed their version of RRT
hat is able to ensure that the generated tree roots have the
owest cost path information for improved path planning. To im-
rove the motion planning strategies of autonomous robot, Castro
t al. [47] proposed a sampling based algorithm to calculated the
ontrol law parameters of autonomous robot to increase the level
afety while still reaching the desired target. Starek et al. [48] set
ut to fill the gap between bi-directional motion planning and
symptotic algorithms by developing an asymptotically-optimal
lgorithm to help improve the knowledge space between the two
ethodologies. Li et al. [49] introduces Prioritized Experience
elay (PER) to improve the effectiveness of the original algo-
ithm. However, these sampling-based algorithms still suffer from
he sensitivity to sampling density and lack of guarantees. The
erformance of sampling-based algorithms is dependent highly
n the sampling density of the configuration space. Optimal
ampling density is crucial in algorithms to avoid missing impor-
ant features or becoming computationally intractable. However,
ampling-based algorithms lack theoretical guarantees of com-
leteness or optimality, potentially resulting in failure to find a
olution or sub-optimal solutions.
2

Graph-based techniques have been developed to solve the
path planning issue in robotics such as Delaunay Triangulation,
Voronoi Diagram and Maklink diagram. Lei et al. [50] devel-
oped a Maklink lines graph in combination with an ant colony
optimization algorithm to improve the path planning capabili-
ties. To improve the safety of autonomous robot path planning,
Sellers et al. [51] proposed a generalized Voronoi diagram with
an adjacent node selection algorithm to generate a trajectory
focused on robot safety. Yu and LaValle [52] developed a complete
algorithm and effective algorithm to solve this problem, which
utilizes integer linear programming. Stahl et al. [53] proposed
a multilayer graph-based trajectory planning method for race
vehicles in dynamic scenarios, to improve the overall perfor-
mance in autonomous vehicles. Kularatne et al. [54] developed a
graph-based approach to optimal path planning in general flows,
which help minimize the cost function of the algorithm for fast
and more efficient path planning. Hegedűs et al. [55] proposed
a low-complexity graph-based motion planning algorithm for
autonomous vehicles. The algorithm is designed to be able to
plan collision-free paths in environments with complex obstacles.
Dang et al. [56] proposed a graph-based path planning method
for subterranean exploration using aerial and legged robots. The
method is designed to be able to plan collision-free paths in
environments with complex obstacles, and to take into account
the different capabilities of the aerial and legged robots. However,
aforementioned graph-based representations become memory-
intensive and computationally expensive, especially for large and
complex environments. Furthermore, graph-based models may
struggle to efficiently determine solutions between global and
local optima.

Based on the superb optimization capabilities of bio-inspired
algorithms, researchers have recently explored numerous bio-
inspired approaches for robot path planning and navigation is-
sues. Yang and Luo [37] developed a biologically inspired neu-
ral networks method of autonomous robot coverage navigation
model in a non-stationary environment, which is extended to
unknown workspace by concurrent mapping and navigation [24,
39]. Lei et al. [57] proposed the Bat-Pigeon Algorithm (BPA)
as a solution for autonomous vehicles to adaptively regularize
their speeds while navigating varying road conditions. In order
to effectively find solution to optimizations problems, Dehghani
and Trojovskỳ [58] proposed a natural inspired metaheurstic al-
gorithm based on the behavioral patterns of servals. Yu et al. [59]
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roposed a nature-inspired rat path planning method based on
atSLAM to provide robots with a more flexible and intelligent
avigation methodology. To conquer the problem of simultaneous
AV arrival, Zhang et al. [60] proposed a time window multi-UAV
ath planning scheme for simultaneous arrival. A path planning
ethod based on ant colony optimization (ACO) for dynamic
peed navigation and mapping of autonomous robots is devel-
ped in Lei et al. [50]. However, many of the aforementioned
io-inspired models suffer from slow speed to integrate with real
orkspaces.
Another issue within previous mentioned model is their inef-

iciency in classifying obstacles and collision check. Path planning
esults are affected differently by the approximations of irregular
bstacles’ boundaries. For example, the grids are approximated
bstacle in the grid-based environment. If the grid is too large,
t is simple to generate a map that prevents the robot from
assing between two closely spaced obstacles, which may allow
he robot to pass. The size of the grid is related to the accuracy of
bstacles and also related to calculation time. The complexity of
he typical algorithm applied for grid-based environment is O(N).
N is number of grids in the workspace.

.2. Proposed algorithm and original contributions

A graph-based optimal path planning approach that incorpo-
ates an improved seagull optimization algorithm is proposed
n this paper. The proposed model, along with the mDP algo-
ithm and Bezier-curve-based smoothing, offers rapid and high-
uality path planning for autonomous robots in real-world sce-
arios. Initially, the Maklink graph-based theory is integrated
ith the modified Douglas–Peucker algorithm to reconstruct
he free-space of the environment. The proposed method al-
ows the environmental modeling to enclose irregular-shaped
bstacles into convex polygons and reduce the number of ver-
ices within the constructed graph. Then, we developed a bio-
nspired optimization-based path planning algorithm to traverse
he graph’s edges and plan safe trajectories. Lastly, a path smooth-
ng technique is applied to smooth the overall planned trajectory.
he technical contributions of this paper are summarized as
ollows:

• The paper develops a framework for autonomous robot
path planning focusing on optimizing the trajectory of au-
tonomous robots. The framework employs a graph-based
representation of the environment, which facilitates effi-
cient path computation. By leveraging bio-inspired algo-
rithms, the framework provides a structured and efficient
approach to autonomous robot path planning.
• A new bio-inspired algorithm, namely, improved seagull

optimization algorithm is developed in this paper. The iSOA
algorithm enhances the efficiency of path planning by op-
timizing the trajectory of the autonomous robot within the
workspace. By incorporating seagull behavior into the opti-
mization process, iSOA effectively guides the robot towards
finding optimal paths, leading to improved performance and
navigation efficiency.
• A modified version of the Douglas–Peucker algorithm is

proposed in this paper to tackle irregular obstacles present
in the environment. The mDP algorithm approximates ir-
regular obstacles as polygonal obstacles based on the en-
vironment image, enabling more accurate modeling and
path planning. The resulting graph derived from the mDP
algorithm is then modeled using Maklink graph theory. This
provides a mathematical framework to analyze and op-
timize the path planning process within the graph-based

representation of the environment.

3

• To generate safer and smoother trajectories for the au-
tonomous robot, a Bezier-curve-based smoothing approach
is developed. By considering curvature constraints, the ap-
proach ensures that the robot follows a path with controlled
and optimized curvature characteristics. This smoothing
technique enhances the overall navigation performance of
the autonomous robot by reducing sudden changes in direc-
tion, resulting in smoother and more efficient movements.

The overall workflow of the proposed bio-inspired graph-
based path planning approach is illustrated in Fig. 2. The contri-
butions of this paper include the introduction of a new graph-
based optimal path planning approach, utilization of the im-
proved seagull optimization algorithm, development of the mod-
ified Douglas–Peucker algorithm, application of Maklink graph
theory, introduction of a Bezier-curve-based smoothing approach,
and validation through experiments in real-world settings. To-
gether, these contributions offer a rapid and high-quality path
planning solution for autonomous robots in real-world scenarios.

The rest of this paper is organized as follows. Section 2 presents
the graph-based methodology utilized in the proposed model.
Section 3 describes an improved obstacle approximation method-
ology to reduce the number of vertices within the graph. The
proposed algorithm for robot planning is depicted in Section
4. Section 5 presents a path smoothing scheme to reduce the
overall path length of the generate trajectory. Section 6 reports
simulation results and comparative analyses. Several important
properties of the proposed framework are summarized in Section
7.

2. Environmental modeling — Maklink graph

Spatial environmental modeling approaches significantly en-
hance obstacle collision checking in robot path planning. The
non-obstacle spaces within the workspace are known as free
spaces where the robot can move freely within the workspace,
and the display of obstacles allows the robot to effectively avoid
obstacles. Since modeling the robot environment affects the sim-
plicity and computational efficiency of the path planning method,
this is a fundamental issue in robot path planning. Thus, there
are many modeling techniques, such as grid-based maps, vertex
graphs, and generalized Voronoi graphs. However, the construc-
tion and update of the model are very complicated and required
map configuration with high accuracy, which brings difficulties
to practical applications.

In this section, the Maklink graph method is utilized for ef-
ficient environmental modeling or map construction in complex
environments. Maklink’s capacity to depict the environment as a
graph, where vertices correspond to prospective robot positions
and edges represent feasible trajectories between these positions,
is its defining characteristic. Adaptability is a notable charac-
teristic of the Maklink graph, as it may accommodate various
types of terrain and obstacles effectively, making it versatile
for real-world applications. The method’s sophisticated edge-
weighting scheme permits flexible modeling of diverse factors
such as path length, traversal cost, and environmental constraints,
enabling the construction of optimal or near-optimal paths tai-
lored to particular robot capabilities and goals. In addition, the
Maklink graph exhibits scalability, which is essential for man-
aging complex and expansive environments while maintaining
computational efficiency. Its interpretability enables the robot’s
path planner to acquire a thorough comprehension of the envi-
ronment’s underlying structure, thereby facilitating the planning
of informed decisions. The visual representation of the Maklink
graph facilitates the identification of critical navigation points

and potential obstacles, enabling the robot to navigate efficiently,



T. Lei, T. Sellers, C. Luo et al. Biomimetic Intelligence and Robotics 3 (2023) 100119

M
l

a
M
a
e
p
T
e
o
p

(

p

s

c
r
c

Fig. 2. Illustration of the overall workflow of the proposed bio-inspired graph-based path planning approach.
Fig. 3. Illustration of workspace based on the Maklink graph theory. (a) Dashed green lines are free Maklink lines, which connected two vertices from two different
obstacles. Orange stars depict the middle points (vertices) Vn of the free Maklink line. Dashed blue lines are free links, which connected adjacent vertices. (b) The
aklink graph model has fewer edges than the visibility graph model which is tailored for path planning in cluttered environments with obstacles. Pink and green

ines denote the visibility graph model and Maklink graph model, respectively.
t
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void collisions, and reach its destination without incident. The
aklink graph applied to robot path planning provides a robust,
daptable, and scalable solution, enabling autonomous robots to
ffectively navigate complex environments, resulting in improved
erformance, safety, and dependability in real-world scenarios.
herefore, we utilize an efficientMaklink graph to model the robot
nvironment, which can reduce the complexity of the model and
btain an optimized path. In order to implement the proposed
ath planning algorithm, three assumptions are made:
(1) The mobile robot’s spatial environment is two-dimensional

2D).
(2) The workspace and obstacles are assumed to be static

olygon shapes.
(3) The mobile robot is defined as a single particle, with no

pecific size.
Polygonal terrains, such as those found in a robot workspace,

an be enclosed by a sequence of free Maklink lines. To model this
obot workspace, a graph-based motion planning methodology
an be employed. This graph is constructed by finding the free
4

Maklink lines and the lines of each node on every expanded
virtual obstacle, based on Maklink graph theory:

(1) Free Maklink lines are straight lines, connecting two ver-
tices on two different obstacles, or extending from the apex of an
obstacle and perpendicular to the boundary of the environment.

(2) These lines must not go through any obstacles.
Based on the definitions and assumptions outlined above,

Maklink graph theory constructs the environment model in the
following way:

(1) Identify all free Maklink lines in the environment, as shown
by the dashed green lines in Fig. 3.

(2) Obtain the start point S, the target point T , and the middle
points V1, V2, . . . , Vn of all n free Maklink lines.

(3) Connect the middle points of adjacent free Maklink lines,
he starting point S to the middle points of adjacent free Maklink
ines, and the target T to the middle points of adjacent free
aklink lines.
Each free link provides a collision-free trajectory for mobile

obots, depicted as dashed blue lines in Fig. 3.
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. Polygonal obstacle approximation algorithm

Graph-based models offer a structured depiction of the en-
ironment, facilitating efficient exploration and navigation. By
epresenting the environment as a graph, nodes are correspond
o feasible positions or states, while edges represent valid transi-
ions between them. This feature empowers the proposed method-
logy and other graph-based models to discover near-optimal
olutions for various path planning scenarios. However, real-
orld environments often feature obstacles with complex shapes
nd dynamics that cannot be accurately represented by simple
eometric primitives. This is where the obstacle approximation
echnique comes into play in this paper.

For random obstacles with irregular shapes in the real-world
nvironment, the size of grid and the definition of obstacle filling
such as the obstacle that occupies half of the grid is regarded
s the obstacle filling the entire grid) can be defined in the
rid map to approximate the shape of the entire obstacle [61].
owever, for some robot path planning based on graph theory,
uch as Maklink graph and vertical cell decomposition (VCD),
hese algorithms are only applied to polygonal obstacles, because
f the relationship between different obstacle vertices within the
orkspace. In an environment with obstacles with curved bound-
ries, this type of path planning cannot be achieved. Even if the
bstacle is approximated as a polygon, its irregular and complex
hape still increase the amount of vertices, which lessens the
ath planning efficiency. The Douglas–Peucker (DP) algorithm is a
opular polygon approximation technique used to find a similar
iecewise linear curve with fewer points, given a closed curve.
n order to ensure that the path generated by the DP algorithm
oes not collide with the actual obstacle area, a modified DP
lgorithm is proposed. This algorithm takes into account the fact
hat, while the obstacle approach result of the DP algorithm can
ccurately represent the boundaries of an obstacle, it may not
nclude all of the points inside the obstacle area. Therefore, a
odified algorithm is necessary in order to take into account all
f the points within the obstacle area, so that the generated path
ay not collide with the actual obstacle area.
The proposed mDP algorithm is based on the concept of dis-

imilarity, which is determined by the maximum distance ε be-
ween the original curve point and its simplified piecewise linear
urve. To begin, the set of digitized points of the curvilinear
bstacle S= P1,P2, . . . ,PN is considered. The line connecting
wo points Pa(xa, ya) and Pb(xb, yb) can be expressed as

x (ya − yb)+ y (xb − xa)+ ybxa − yaxb = 0 (1)

Then, find two points Pi(xi, yi), Pj(xj, yj) that has the maximum
distance from the list S. The line passing through the two points
{Pi,Pj} separate the curvilinear obstacle into two curves. Then
the deviation dm of a point PPm(xm, ym) ∈ {Pi,Pi+1, . . . ,Pj} from
{Pi,Pj} the line passing through can be defined by

dm =

⏐⏐xm (yi − yj
)
+ ym

(
xj − xi

)
+ yjxi − yixj

⏐⏐√(
xj − xi

)2
+
(
yi − yj

)2 (2)

Therefore, the point with the largest deviation dmax can be
ound, which is denoted as Pmax. Then by utilizing the pairs
Pi,Pmax} and {Pmax,Pj}, two new points can be found from the
from the concept found in Eqs. (1) and (2). Obviously, as we

elect the newer point with the largest deviation from the passing
hrough the pair of points, the maximum deviation continues to
ecrease. This process can be repeated until the maximum devi-
tion of the point contained in its corresponding edge segment is
ess than the predefined maximum dissimilarity tolerance thresh-
ld value ε. It should be noted that there is another deviation
of a point P (x , y ) ∈ {P ,P , . . . ,P ,P ,P} from the
n n n n j j+1 N 1 i

5

line passing through the pair {Pi,Pj}, which follows the same
procedure. Finally, all the selected points are stored in the list V.

The proposed mDP Algorithm sequence is as shown in Fig. 4(a).
In this case, since the deviation dm and dn is greater than or
equal to ε value, new line segments are generated by connecting
(Pi,Pm), (Pm,Pj), (Pi,Pn), and (Pn,Pj). Pm and Pn are the points
with the largest deviation dm and dn. Then based on the new line
segments (Pi,Pm), (Pm,Pj), (Pi,Pn), and (Pn,Pj), it recursively
finds new largest deviation, as d1, d2, d3, and d4 in Fig. 4(b). In
this case, since the d1, d2, d3, and d4 are all smaller than ε, the
ist V refuses to include the newly acquired points resulting from
he largest deviation.

Since the line segment of the polygon initially obtained is less
han maximum dissimilarity tolerance threshold value ε from the
riginal boundary of the obstacle. By moving the line segment of
he polygon toward the boundary of the obstacle a new poly-
on is formed, which encloses the original polygon. As shown
n Fig. 4(b), since d1, d2, d3, and d4 are smaller than ε, we move
ine segments (Pi,Pm), (Pm,Pj), (Pi,Pn), and (Pn,Pj) toward the
bstacle curve as d1, d2, d3, and d4, respectively. The intersection
oints can be found for extended new line segment. Therefore, as
he whole obstacle can be wrapped in the new polygon. The pseu-
ocode of the modified Douglas–Peucker algorithm for curvilinear
bstacle as shown in Algorithm 1.

Algorithm 1: The proposed modified Douglas–Peucker (mDP)
algorithm
Input
A list S containing the digitized point of the obstacle.
Threshold value ε for maximum dissimilarity tolerance.
Output
A list of points V represents the final result of polygonal
approximation of the obstacle.
Step 1: Line
V={}; // Create the polygonal approximation point
list
Find the two points {Pi,Pj} in S with the maximum
distance from each other;
Separate the curvilinear obstacle into two curves, C1 and C2
Step 2: Maximum deviation
Find deviation of points in C1 and C2 from the line (Pi,Pj);
Find maximum deviation dmax as dm and dn and points Pm
and Pn corresponding to dm and dn;
Step 3: Termination/recursion condition
if dmax ≤ ε then

V = {V,Pi,Pj}; // Add new point in the list
else

V = {V, DP_max(Pi,Pm)}; // Add new point in the
list
V = {V, DP_max(Pm,Pj)};
V = {V, DP_max(Pi,Pn)};
V = {V, DP_max(Pn,Pj)};
end

4. Proposed algorithm for robot path planning

This section describes the use of Dijkstra’s algorithm combined
with an iSOA method to enable robot path planning based on
Maklink graph-based environmental modeling. An adjacency ma-
trix with weights is defined in order to calculate the shortest path
and a smooth scheme is used for the computation in this paper.

4.1. Initial path planning

Dijkstra’s algorithm is a popular approach for finding the
shortest path between a starting point S and a target point T on a
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proposed mDP algorithm. (Pi,Pj) denotes the line segment with the maximum distance in the obstacle. According to the line (Pi,Pj), the curvilinear obstacle can
be separated into two curves, to find the largest deviation dm and dn of the two curves respectively.
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network graph. The cost function is usually calculated as the sum
of the weights of all the line segments of the path. In this case, the
weight of each line segment is represented by its length. Before
using the Dijkstra algorithm, an adjacency matrix must be created
that includes weights for each edge between two adjacent path
points vi and vj. This matrix can then be used to calculate the
shortest path. The value of each element in the matrix represents
the length of the straight-line segment between the two adjacent
points. Therefore, the element at position (i, j) in the adjacency
matrix can be defined as

Adj[i, j] =
{

length
(
vi, vj

)
if vi, vj are adjacent

∞ other (3)

Dijkstra’s algorithm can be used to plan out a sub-optimal path
in the Maklink graph, represented by waypoints W0, W1, W2, . . . ,

d, and Wd+1, where W0 and Wd+1 are the starting point S and
he target point T , respectively.

.2. Improved seagull optimization algorithm

The original Seagull Optimization Algorithm (SOA) has several
rawbacks, including poor solution quality, premature conver-
ence, and a propensity to easily degenerate into a local optimum.
n this section, an improved SOA is developed to overcome these
rawbacks. The SOA is a bio-inspired heuristic optimization tech-
ique in light of the natural behavior of seagulls. For instance,
he migration of seagulls is a seasonal movement from one place
o another in search of the most abundant food sources, provid-
ng enough energy to survive in winter conditions. Studies into
eagull have revealed their aggressive tendencies when migrating
rom one place to another, often attacking other birds that are mi-
rating at sea in a spiral motion. The SOA focuses on the migration
nd attack behavior of seagulls. The mathematical descriptions of
he behavior of search agents in SOA are shown as follows:

(a) Avoid collisions: To prevent collisions between adjacent
gents, an additional control factor A is used to adjust the location
f the seagull (search agent) in question. This helps to avoid any
otential for collisions. The potential location for search agents
hat does not conflict with other search agents in the environ-
ent is denoted by S⃗P = A× S⃗c(i), i = 0, 1, 2, . . . ,max(i). the
urrent position of the search agent is denoted by Sc , the current
teration is indicated by i, and the motion behavior of the search
gent in a given search space is represented by A.

A= fc −
(
i×

(
fc

))
(4)
max(i) c

6

where fc denotes the frequency control interval of variable A,
hich decreased linearly from fc to 0.
(b) After avoiding collisions with other neighbors, the can-

idates try to move in the direction of the best neighbor (the
est solution) by taking cues from their experience. The candidate
earch agent positions S⃗c(i) towards the best fitting candidate
earch agent S⃗b(i) are described by d⃗e = B×

(
S⃗b(i)− S⃗c(i)

)
. The

oefficient B = 2 × A2
× rand is a random value that balances

xploitation and exploration. B, where rand denotes the random
alue between 0 and 1.
(c) Finally, search agents update their position based on the

est solution by utilizing the following formula in order to move
oward the best solution (search agent). D⃗e =

⏐⏐⏐S⃗N + d⃗e
⏐⏐⏐ describes

he difference between the agents and the best cost. During
igration, seagulls can adjust the angle and velocity of their
ttack continuously. By utilizing their weight and wings, they
an remain in the air and spiral in the x, y, and z planes as
ˆ = r × cos(t); ŷ = r × sin(t); ẑ = r × θ . The random value
θ is described in the interval 0 and 2π , and the radius of the
spiral turns r , is formulated as r = α × eβθ . Here, e denotes the
natural logarithm base, and α and β shape the spiral. The updated
position of agents is calculated in Eq. (5).

S⃗c(i+ 1) =
(
D⃗e × x̂× ŷ× ẑ

)
+ S⃗b(i) (5)

where S⃗c(i) keeps the best results as well as the updated positions
of the search agents.

However, the original SOA has a number of limitations, such
as poor solution quality, premature convergence, and a propen-
sity to readily degenerate into a local optimum. The developed
improved seagull optimization algorithm incorporated inertia
weight and mutation operators in this paper enhances the balanc-
ing between the exploration and exploitation stages and increases
the opportunity to reach the optimal value. Since the optimiza-
tion process presents a non-linear declining curve, simulating the
migration process of the seagull population by decreasing the
additional control factor A linearly in Eq. (4) may reduce the
actual algorithm’s optimization search capability.

A= fc − fc ×

(
2×

(
i

max(i)

)
−

(
i

max(i)

)2
)

(6)

The values of additional variable control factor Adecrease in a
onlinear fashion during the iSOA optimization process in Eq. (6),
hich can enhance the algorithm’s local search capability. In
ontrast to the original linear control factor A, this nonlinear
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ontrol factor facilitates the local exploitation in a greater number
f iterations. It accelerates the convergence capability of the
lgorithm and improves the algorithm’s search precision.
When using a nonlinear control factor, it is known that the

recision of individuals provided after the total iteration may
e reduced due to a reduction in exploration around the area
f the present optimal individual. In addition, in each iteration,
he previous prospective individual set will be supplanted by
he new updated individual set, and only the current optimal
ndividual will be retained for the subsequent iteration. A solitary
andidate will not contribute to the organization’s capacity to
rovide search directions. This is the reason why fundamental
OA exploration is inefficient. The new candidate individuals are
enerated using only the difference between the current individ-
al and the global optimal individual, according to Eq. (5). The
urrent population member will be attracted to and congregated
round the global optimal individual. It may result in premature
opulation convergence and limited individual precision.
The position of the personal best history is a crucial piece

f information obtained by population-based meta-heuristic ap-
roaches during the iteration process, and it plays a crucial role
n directing the algorithm to search the unexplored regions. Nev-
rtheless, the fundamental SOA does not utilize the personal
est history data during the iterative process. In other terms,
OA is a memory-less population-based meta-heuristic algorithm.
herefore, the formulation of SOA is modified to account for
he best personal historical position and to direct the population
earch procedure. The proposed position update rule is expressed
n Eq. (7).

S⃗c(i+ 1)

=
(⏐⏐A · S⃗c(i)+ B ·

(
S⃗b(i)− S⃗c(i+ 1)

)⏐⏐× x̂× ŷ× ẑ
)
+ S⃗P (i) (7)

The position of the new candidate search agent is determined
by analyzing data pertaining to the current seagull, the global best
seagull, and the candidate’s own best position in the past. The
proposed iSOA increases the accuracy of candidates by identifying
plausible regions of the search space.

4.3. Implementation of iSOA for path planning

The initial sub-optimal path, determined by Dijkstra’s algo-
rithm in the Maklink graph, is represented by waypoints W0,
W1, W2, . . ., Wd, and Wd+1, with W0 and Wd+1 representing
the starting point S and the target point T , respectively. Since
these path points are the middle points of the corresponding
free Maklink lines, they are not ideal for traversing open areas.
Thus, the positions of the path points need to be adjusted and
optimized on their free Maklink lines in order to achieve the
shortest path. Let the free Maklink lines crossed by the initial path
be denoted by Li (with i = 1, 2, . . . , n). If W 1

i and W 2
i are the two

endpoints of line Li, then the location of Wi on its free Maklink
ine W 1

i W
2
i can be expressed as follows:

Wi (γi) = W 1
i +

(
W 2

i −W 1
i

)
× γi, i = 1, 2, . . . , n (8)

where γi is the scale factor, γi ∈ [0, 1]; n is the number of free
Maklink lines.

A new robot path may be generated by a set of optimal
scale factors (γ1, γ2, . . . , γn), thereby obtaining the optimal and
shortest path. The objective function of the optimization problem
can be formulated as follows:

L =
d∑

i=0

length {Wi (γi) ,Wi+1 (γi+1)} (9)

where length {Wi (γi) ,Wi+1 (γi+1)} denotes a straight line dis-
tance between two adjacent points W and W .
i i+1 a

7

Noted that the iSOA’s dimensions are the free Maklink lines
traversed by the path. As shown in Fig. 5(a), {W 1

i−1,W
2
i−1}, {W

1
i ,

W 2
i }, and {W 1

i+1,W
2
i+1} are three different dimensions in the Mak-

link graph model. Wi is both the endpoint of the Maklink line and
the obstacle’s vertex P in Fig. 5(b). Therefore, in order to limit
the search dimension of the iSOA algorithm thereby obtaining
the result promptly, it is essential to decrement the number of
the polygonal obstacles’ vertices in Section 3. The Maklink graph
model is adopted in this paper partially due to the same ability to
reduce the search dimension. For instance, if the obstacles’ ver-
tices are all connected, there are more connecting lines, such as
{P1, P4} in Fig. 5(b). The proposed iSOA algorithm is then utilized
to optimize on the Maklink lines to determine the optimal passing
position as shown by the green lines in Fig. 5(b).
Algorithm 2: Implementation of iSOA for path planning
Parameter Initialization
Initialize the parameters A, B, fc , α, β and max iteration
times max(i).
Population Initialization
Random initialize all search agents on the d Maklink lines.
for i = 1 : max(i) do

for j = 1 : d do
Calculate the fitness Fit(j) using Equation (9);
if Fit(j) ≤ Fitbest then

Fitbest = Fit(j);
end

end
S⃗b ← Fitbest ; // Store best candidate

A= fc − fc ×
(
2×

(
i

max(i)

)
−

(
i

max(i)

)2)
; // Update

additional control factor
Rand = Rand(0, 1);
B= 2× A2

× rand; // Update coefficient
D⃗e = |S⃗N + d⃗e| ; // Update difference
θ = Rand(0, 2π );
r = α × eβθ ;
S= x̂× ŷ× ẑ;
S⃗c(i+1) =

(⏐⏐A · S⃗c(i)+ B ·
(
S⃗b(i)− S⃗c(i+ 1)

)⏐⏐× S
)
+ S⃗P (i);

// Update position of search agent
i = i+ 1;
end

The complexity of the algorithm is a key factor in assessing its
performance. The computational complexity of the proposed iSOA
algorithm is O

(
Maxiteration × no × np × of

)
. Here, no represents

he number of objectives, np stands for the population size, and
f refers to the objective function for the problem. The space
omplexity for iSOA is given as O

(
n0 × np

)
. The implementation

f iSOA for path planning is summarize in Algorithm 2.

. Cubic Bezier curve path smoother

The proposed cubic Bezier curve path smoother offers several
dvantages over other smoothing techniques, allowing outcomes
o be readily controlled. Most significantly, the curve always stays
ithin the convex hull of the control points. By examining the
onvexity, it is possible to determine whether the resulting line
ay intersect with any obstacles. Another benefit is the simple
ontrol of the approach angle towards the goal position. In a cubic
ezier curve, which is defined by four control points (T0, T1, T2,
nd T3), the approach to T3 is achieved from point T2. Thus, by
djusting the position of T2, it is possible to control the approach
ngle to T3. Similarly, the curve is generated by moving from T0
owards T1.

The basic Bezier curve is described in detail in Tayebi Arasteh
nd Kalisz [62]. Therefore, we concentrate solely on the control
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Fig. 5. Illustration of proposed iSOA path planning method in Maklink graph. (a) The initial path is determined by Dijkstra’s algorithm. It determines n free Maklink
ines to go through, which is the number of dimension in iSOA. (b) The final optimized path is obtained by optimizing the position passing through the Maklink
ine through iSOA. Dashed black lines represent free Maklink lines. The orange lines represent the initial paths obtained by the Dijkstra’s algorithm. The green lines

epresent the final paths obtained by iSOA.
Fig. 6. Illustration of properties of the Bezier curve. (a) A Bezier curve is generated between nodes Sn and Sn+1 . (b) The collinearity between points SNn
2 , SNn3 , and

SNn+1
1 ensures a smooth connection between curves. (c) The influence of control points on the Bezier curve can be visualized by changing their positions along the

vectors.

T
a

point design. The Bezier curve is utilized to create a path between
two nodes, Nn and Nn+1. In this context, the initial node becomes
T0, while the subsequent node in the sequence is designated as
T3. We engineer the path curvature to ensure that the approach
towards Sn+1 is directed towards the next node Sn+2, as depicted
in Fig. 6(a). We determine the angle β between two vectors
represented by [Sn, Sn+1] and [Sn+1, Sn+2]. To achieve a smooth
curve around the node Sn+1, we calculate half of the angle β and
construct a vector with this angle relative to the line between Sn
and Sn+1. The position of point T2 is then established along this
vector to ensure that the curve makes half of the turn towards
the subsequent node Sn+2. The remaining half of the turn is
controlled by properly placing the node T1 in the next section.
The point T1 of the current section is positioned on a vector with
half of the angle β from the previous section, which is calculated
between the lines connecting points [Sn−1, Sn] and [Sn, Sn+1] as
illustrated in Fig. 6(a). Initially, T1 and T2 are positioned at the
midpoint of the line connecting Sn to Sn+1. Utilizing the angle in-
formation of the two vectors, we construct two rotation matrices,
Dβn and Dβn−1 , and rotate the points T2 and T1, respectively. The
rotation matrix Dβ is constructed as follows:

D =

[
cos( β

2 ) − sin( β

2 )

sin( β

2 ) 3 cos( β

2 )

]
(10)

here β is the angle of βn−1 or the angle of βn. However, the
points are calculated as

Tn = Dβ ×

[
Tnx

]
(11)
Tny

8

The value of n is either 1 or 2 to determine the control point
n and Dβ are the rotation matrix. Placing the control points T n

2
nd T n+1

1 on the same vector ensures collinearity and a smooth
connection between the generated curves of the node sections
between Sn to Sn+1 and Sn+1 to Sn+2, as illustrated in Fig. 6(b).
Moreover, the robot’s final position can be controlled by manually
inputting the angle β for the final node. This approach directs the
path to approach the final position from the desired angle.

In Euclidean geometry, the shortest path between two points
is a straight line connecting them. To generate a curve with the
shortest arc length, it is necessary to have a curve that is as
close to a straight line as possible. To achieve this, we need to
position points T1 and T2 as close as possible to the starting node
Sn and the goal node Sn+1, respectively. However, since we are
developing a smooth path planner with a curvature constraint,
we must also consider the steepness of the curve. Thus, the goal
of positioning the control points is to find the shortest distance
to the nodes while ensuring that the curve’s steepness does
not exceed the maximum allowable limit. The curvature can be
defined as the reciprocal of the radius of a circle, denoted by
P = 1

D .
To approximate the curvature, we can calculate the radius of a

circle described by three consecutive points on the Bezier curve. A
circle can be fitted to three equidistant points Ta1, Ta2, Ta3 on the
curve. We select the second point, Ta2, as the origin of the circle,
and recalculate points Ta1 and Ta3 as G and Z , represented by: G =
Ta1−Ta2 and Z = Ta3−Ta2. The coloration between the equation
of a circle and the radius is known as: (x − xa)2 + (y − ya)2 =
x2 + y2 = D2. It can be rewritten as, 2x x+ 2y y = x2 + y2 = U .
a a a a
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Fig. 7. Verification by polylines {T0, A1, A2, A3,T3} in (a) and (b) or {T0, A1, A2,T3} in (c) and (d). The polylines allows the newly constructed path to be shorten
nd more smooth than the original path by moving between the ordinal line’s most extreme points. This allows the curve to be formed in real-time with low
omputational effort.
herefore, a system can be formed as

xaxG + yayG
xaxZ + yayZ

(12)

Thus, by fitting the radius calculation, an approximate curva-
ure of P at any given point of the inverse radius of a circle as

=
1√

x2a + y2a
= 2×

xGyZ − xZyG√
(UGxZ − UZxG)2 + (UGyZ − UZyG)2

(13)

The golden section search method is used to determine the
optimal positions for T1 and T2. Initially, the maximum and min-
imum candidate positions for each node are set at nodes Sn and
n+1 respectively, with the midpoint between the two serving
s the starting candidate position. If the maximum curvature of
curve generated using the proposed control point is less than

he threshold, the current position becomes the minimum of
he section; otherwise, it becomes the maximum. This process
ontinues until the section becomes sufficiently small, allowing
or the near-optimal distance to curvature ratio to be found for
ach point. Fig. 6(c) provides a visualization of the process of
hanging the location of the control points for the creation of
he Bezier curve. As the control points are moved closer to their
espective nodes, the arc length of the curve decreases while the
urvature increases.
In similar approaches, the convexity of control points is veri-

ied to ensure the produced trajectory. However, in our approach,
s the straight line between the nodes is obstacle-free, it is not
ecessary to check the entire convex. Instead, we validate the
olyline that bounds the curve. Since we use a cubic Bezier curve,
e can create three lines between all control points. The curve is
ounded by the midpoints of these lines, as depicted in Fig. 7. The
ounding polyline can be represented by line segments {T0, A1},

{A1, A2}, {A2, A3}, and {A3, T3}.
When control points T1 and T2 are positioned beneath the

curve, as shown in Figs. 7 (c) and (d), the curve is not bounded on
the outer side. To address this, if T1 is positioned under the curve,
the middle point between T1 and T2, denoted as A1, is selected.
In this case, A3 is not selected. Similarly, if T2 is positioned under
the curve, A3 is not calculated and A2 is directly connected to T3.
The selection process for bounding polyline points is outlined in
Algorithm 3.

To ensure that the generated path is obstacle-free, we verify
the polylines {T0, A1, A2, T3} or {T0, A1, A2, A3, T3}. This method
provides a more precise verification process by minimizing the
chance of false obstacle detection. Unlike other approaches that
check the whole convex, our proposed method only checks the
polyline that bounds the curve. However, if the bounding poly-
lines intersect with one or more obstacles, we cannot be confident
that a safe path can be obtained under the given conditions. In
such cases, the trajectory generation may fail. The following is a
summary of the benefits of the cubic Bezier curve path smoother.
9

Algorithm 3: Implementation of Cubic Bezier Curve Path
Smoother
Input: iSOA generated trajectory
for i = 1 : length(Pt ) do

points = Path[i : i+ 2] // Extract the path
if straintLine(points) == True then

Break
else

T0, T1, T2 = point; // Separate the point into 3
variables

n = 1;
if T1 above line {T0, T1} then

An = {T0x+T1x
2 ;T0y+T1y

2 }; // Find the mid-point
between {T0, T1}

n = n+ 1;
An = {T1x+T2x

2 ;T1y+T2y
2 }; // Find the mid-point

between {T1, T2}
n = n+ 1;

else
An = {T1x+T2x

2 ;T1y+T2y
2 }; // Find the mid-point

between {T1, T2}
n = n+ 1;
End

Curved points = BezierCurve((T0, T1, T2),An);
NewPath = [New Path, Curved Points];
End

End

(1) The smoothed path is tangent and curvature continuity, i.e.,
the robot has the smooth steering command, which prevents
acceleration discontinuities and makes the trajectory safer for
robots to follow. (2) The seamless trajectory is only impacted
by the two lines at the corner. Adjustments to alternative paths
have no effect on the uniform trajectory. (3) We could readily
modify the flattened path based on constraints imposed by the
environment or the robot.

6. Simulations and comparison studies

In this section, simulations and comparison studies are per-
formed to validate our proposed graph-based optimal path plan-
ning model. In the first subsection, numerical experiments and
comparison studies are conducted by utilizing different parame-
ters of the proposed mDP algorithm, and the results are discussed
and compared with original DP algorithm. In the second sub-
section, the proposed graph-based iSOA path planning is applied
to the map of real-world scenarios in comparison with other

state-of-the-art path planning algorithms.
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Fig. 8. Comparison of polygonal approximation result of DP and mDP Algorithms according to ε value. The gray area represents the original obstacle, the purple
dash lines enclose DP results, and the light blue area represents the approximated polygonal obstacle generated by the mDP algorithm. ε denotes the maximum
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Table 1
Numbers of vertices and redundant area ratio of different ε in Fig. 8.

ε Number of Vertices Redundant Area Ratio

50 8 9.14%

100 7 10.39%

150 4 29.36%

200 4 29.36%

250 3 57.76%

300 3 57.76%

6.1. Numerical experiments and comparison studies

The fusion of graph-based models and obstacle approximation
olds immense importance across diverse domains, particularly
n the realm of path planning and motion control. In order to
xplore the significance of obstacle approximation in graph-based
ethodologies and examine the correlation between robot size
nd algorithm parameters, numerical experiments and compari-
on studies are first carried out to validate the proposed convex
DP algorithm for obstacle approximation and its performance

n graph-based environmental modeling.
The entire obstacle is computed and then enclosed by the mDP

lgorithm, while it inevitably increases the area of the original
bstacle. Based on a real irregularly shaped obstacle, the compar-
son results of DP and mDP algorithm with different maximum
issimilarity tolerance threshold value ε (with interval 50) are
hown in Fig. 8. The mDP algorithm results are summarized in
able 1. As ε increases, the generated polygon vertices decease,

while the redundant space occupied by the obstacle polygon
10
increases. The reduction of the vertex angle may reduce the
calculation time in the global path planning. However, increasing
the extra space for obstacles may eliminate the possibility of
a feasible path. Therefore, the maximum dissimilarity tolerance
threshold value ε should be adjusted to balance the number of
vertices and redundant area ratio, which affects computational
complexity in graph theory and the optimal of the result in robot
trajectory, respectively. As in Section 2, the autonomous robot
in the Maklink graph is considered as a particle. To ensure that
established path is not to close to the obstacles, the boundary of
the polygon obstacle is expanded according to the addition of the
maximum value to the distance occupied by the robot diameter
with the minimum distance required for correct sensing. There-
fore, in our proposed mDP algorithm, the threshold ε affects the
expansion of obstacles should be proportional to the robot’s size.

In the second simulation, the mDP algorithm simplifies the
intricate geometry of obstacles in the real-world map into a rep-
resentation that can be efficiently processed by the graph-based
model. The comparison of mDP polygonal approximation results
of different ε in the real-world environment is depicted in Fig. 9.
It showcases the influence of the parameter ε on the execution
f obstacle approximation. The interval range of ε represents the
pproximate polygonal obstacle stability. Therefore, this is also
ne of the criteria considered when we select the parameter ε of
he real-world map.

When the ε is in the interval from 0.57 m to 0.61 m, an
pproximated polygonal obstacle is obtained with 10 vertices.
he generated approximate polygonal obstacle has too many
ertices, which may affect the performance of the graph-based
odel. When the ε is in the interval from 0.82 m to 1.92 m,
n approximated polygonal obstacle is generated with 6 vertices.
or graph-based models, this is a realistic polygonal obstacle that
ffectively obtains a balance between the number of vertices with
he redundant area. The ε in this interval is also the diameter
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Fig. 9. Comparison of DP and mDP polygonal approximation results of different ε in real-world environment. The pink dash lines encloses DP model results and
the cyan polygons are the mDP results. (a) The ε is in the interval from 0.57 m to 0.61 m, generating an approximated polygonal obstacle with 10 vertices. (b)
The ε is in the interval from 0.82 m to 1.92 m, generating an approximated polygonal obstacle with 6 vertices. (c) The ε is in the interval from 1.93 m to 2.46 m,
generating an approximated polygonal obstacle with 5 vertices. (d) The ε is in the interval from 2.47 m to 4.51 m, generating an approximated polygonal obstacle
with 4 vertices.
Fig. 10. The simulation in the real-world environment. (a) The selected rectangle area for simulation. The size is 70 m in width and 110 m in length. (b) The
pproximated polygonal obstacles with the mDP method.
f the autonomous robot that is adequate for the current en-
ironment. When the ε is in the interval from 1.93 m to 2.46
and 2.47 m to 4.51 m, the approximated polygonal obstacle

s generated with 5 vertices and 4 vertices, respectively. Their
esulting approximate polygonal obstacles have too much redun-
ant area, which may block the original potential pathway. Upon
nalyzing the appropriate value of ε, we observed that in most
ases, an improperly tuned parameter would result in excessive
11
redundancy in the new obstacle border, as depicted in Figs. 10(c)
and (d). This results in a significant increase in the obstacle border
compared to the original obstacle, thereby reducing the available
space for the robot’s traversal. By appropriately coupling the ε

parameter with the robot’s overall size, the mDP algorithm gen-
erates new obstacle boundaries without excessive redundancy
within the model, as demonstrated in Table 2.
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Table 2
Numbers of vertices and redundant area ratio of different ε in Fig. 9.

Number of Vertices ε (m) ε Interval (m) Redundant Area Ratio

10 0.57–0.61 0.04 14.85%

9 0.62–0.72 0.10 17.02%

8 0.73–0.78 0.05 19.54%

7 0.79–0.81 0.02 21.17%

6 0.82–1.92 1.10 24.64%

5 1.93–2.46 0.53 30.83%

4 2.47–4.51 2.04 42.67%

6.2. Path planning under real-world application environments

In this section, three simulated experiments and compari-
on studies are performed in the selected real-world settings
o demonstrate the feasibility and robustness of the proposed
lgorithms. Six state-of-art path planning algorithms, namely A*,
i-directional A*, D*-Lite, Breadth First Search (BFS), Rapidly-
xploring Random Tree (RRT), and Batch Informed Trees (BIT*)
re selected for comparison studies. A* algorithm is an informed
earch method that efficiently finds the shortest path between
wo nodes in a graph by combining the cost of the path traveled
o far with an estimated cost to the destination node. Bidirec-
ional A* is a variant of the A* algorithm that simultaneously
xplores the graph from the start and goal nodes, meeting in
he middle to find the shortest path more efficiently than A*
lone. The D*-Lite path planning algorithm is an incremental
earch algorithm that efficiently finds the shortest path in a
raph with dynamically changing costs, using a combination of
ynamic programming and A* search techniques. It updates only
he affected portions of the graph when costs change, minimizing
he computational overhead while maintaining optimality. BFS is
n uninformed search algorithm that explores all the neighbors
f a node before moving on to the next level, making it suit-
ble for finding the shortest path in an unweighted graph. RRT
s a probabilistic complete algorithm that incrementally builds
tree of randomly sampled configurations, enabling efficient
ath planning in complex and high-dimensional spaces. BIT* is
sampling-based motion planning algorithm that incrementally
uilds a graph representation of the configuration space, provid-
ng efficient path planning in high-dimensional and continuous
paces. A* algorithm, Bidirectional A* algorithm, D*-Lite, BFS al-
orithm are based on grid maps with a grid size of 1 m × 1 m,
hich is a total of 110 × 70 grids in the selected area. RRT and
IT* are sampling-based model with 10,000 maximum iteration
nd 0.5 m step length.
The original environment with complex-shaped obstacles is

llustrated in Fig. 11(a), The selected simulation area is a rectan-
ular area with a length of 110m and a width of 70m as shown
n Fig. 11(b). It also demonstrates the utilization of the pro-
osed mDP algorithm to approximate the obstacles as polygons.
hree scenarios are utilized to validate the proposed graph-based
io-inspired path planning algorithm. The starting and target
oints are randomly set in Scenario 1 and Scenario 2. Scenario
considers the impact of randomly added obstacles in the orig-

nal Scenario 2 on the proposed graph-based bio-inspired path
lanning algorithm. It necessitates map reconstruction, unlike
rid-based maps. The proposed graph-based model requires only
he cancellation of the connecting lines near to the new obstacles
s shown in Fig. 13(b). Thus, the bio-inspired path planning algo-
ithm may re-executed easily, which saves a substantial amount
f effort during map creation.
12
The simulation results of the proposed method for Scenarios
, 2, and 3 are shown in Figs. 11(a), 12(a), and 13(a), respectively.
he blue lines represent the initial path planning by Dijkstra’s
lgorithm. The green edges are the alternative paths for iSOA
election. The purple line shows the final trajectory obtained
y iSOA. Since the iSOA-obtained trajectory is a line segment
omprised of points and edges, we utilize the proposed cubic
ezier path smoother to smooth the robot’s movements, allowing
or a smoother steering command. Figs. 11(b), 12(b), and 13(c)
llustrate the various smoothed trajectories in light of the ob-
ained IOSA results. The convergence curves in Figs. 12(c) and
3(d) show the iSOA algorithms performance.
The results of comparison studies in terms of minimum path

ength, average path length, and average execution time are out-
ined in Table 3. From Table 3, it reveals that the execution
imes of the A* algorithm, Bi-directional A* algorithm, D*-Lite,
nd BFS algorithms are extremely short, which are also in line
ith their characteristics. However, their resulting path length

s also dependent on the grid size. An optimal solution cannot
e obtained based on the existing grid size. Our proposed al-
orithm obtains the optimal solution in Scenarios 1 and 3, and
he solution in Scenario 2 is also close to the optimal result of
IT*. However, our algorithm outperforms the BIT* algorithm in
erms of average path length and average execution time, which
emonstrates the stability and efficiency of our proposed bio-
nspired algorithm. The trajectory results and search ranges of
* algorithm, Bidirectional A* algorithm, D*-Lite, BFS algorithm,
RT, and BIT* in Scenarios 1, 2, and 3 are shown in Figs. 11(c)–
h), Figs. 12(d)–(h), and Figs. 13(e)–(h), respectively. It exhibits
he search areas in space for different algorithms. In general,
smaller search space corresponds to an algorithm with more
ptimal space complexity. Our algorithm has a relatively limited
earch space, which practically corresponds to an improvement
n algorithm time (Figs. 11(a), 12(a), and 13(a)).

.3. Analyses and discussions

By incorporating mDP polygonal obstacle approximation into
raph-based models, we can mitigate computational complexity,
esulting in faster planning and control algorithms. This can be
bserved in the number of vertices and edges required to con-
truct the graph for each obstacle. Obstacles with more intricate
urves necessitate additional points along their edges to create
he graph, leading to an increase in the number of vertices and
dges. This, in turn, diminishes the effectiveness of the proposed
odel, which is why we have integrated obstacle approximation

nto our approach. The integration of graph-based models and ob-
tacle approximation techniques allows for efficient and precise
ath planning in environments with complex obstacles. It enables
he navigation of robots, autonomous vehicles, or virtual charac-
ers through cluttered spaces while considering the dynamics and
onstraints imposed by the obstacles. By leveraging the strengths
f both approaches, this combination enhances the efficiency,
calability, and real-time performance of the proposed model.
he advantages of our proposed mDP algorithm with Maklink
raph-based model can be summarized as follows:
(a) Accurate Representation of Irregular Barriers: One of the

rimary benefits of employing the mDP algorithm lies in its abil-
ty to accurately represent irregular barriers in the environment.
s the mDP algorithm simplifies the raw obstacle data while
reserving essential geometry, the resulting polygonal imped-
ments closely approximate the shape of the original barriers.
his accurate representation ensures that the Maklink Graph
ethod can effectively navigate around intricate and complex ob-
tacles, leading to more reliable and collision-free path planning
or autonomous robots.
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Fig. 11. The simulation and comparison results of Scenario 1 in the real-world environment. (a) The trajectory results of the proposed iSOA in the selected rectangle
area. The blue and purple lines are the initial path planned by Dijkstra’s algorithm and the final trajectory by the proposed iSOA, respectively. (b) The smoothed
trajectory based on the cubic Bezier cure path smoother. (c)-(h) are the trajectory results and the search ranges of A* algorithm, Bidirectional A* algorithm, D*-Lite,
BFS algorithm, RRT, and BIT*, respectively.
Table 3
Comparison of minimum path length, average path length, and algorithm average execution time of the compared algorithms and the proposed graph-based iSOA.
The values are reported for 50 executions.

Scenario Algorithm Minimum Path Length (m) Average Path Length (m) Average Execution Time (s)

Scenario 1 A* 128.91 128.91 2.09

Bidirectional A* 129.74 129.74 0.06

D*-Lite 128.91 128.91 0.58

BFS 132.67 132.67 0.02

RRT 139.82 153.74 9.84

BIT* 125.69 142.48 87.84

Proposed Method 125.16 127.01 17.19

Scenario 2 A* 82.36 82.36 2.06

Bidirectional A* 82.36 82.36 0.03

D*-Lite 82.35 82.35 0.55

BFS 82.36 82.36 0.02

RRT 102.47 114.45 9.09

BIT* 77.20 110.55 75.32

Proposed Method 79.10 80.24 14.28

Scenario 3 A* 100.25 100.25 2.07

Bidirectional A* 101.08 101.08 0.04

D*-Lite 100.25 100.25 0.65

BFS 107.57 107.57 0.02

RRT 116.21 124.87 9.47

BIT* 96.53 117.54 96.86

Proposed Method 95.01 96.34 10.03
13
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Fig. 12. The simulation and comparison results of Scenario 2 in the real-world environment. (a) The trajectory results of the proposed iSOA in the selected rectangle
area. The blue and purple lines are the initial path planned by Dijkstra’s algorithm and the final trajectory by the proposed iSOA, respectively. (b) The smoothed
trajectory based on the cubic Bezier cure path smoother. (c) The convergence curve shows the iSOA algorithm performance. (d)-(i) are the trajectory results and the
search ranges of A* algorithm, Bidirectional A* algorithm, D*-Lite, BFS algorithm, RRT, and BIT*, respectively.
Fig. 13. The simulation and comparison results of Scenario 3 in the real-world environment. The same starting and target points are in Scenario 2. A new obstacle
is discovered and updated on the map. (a) The trajectory results of the proposed iSOA in the selected rectangle area with the newly observed obstacle. The blue
and purple lines are the initial path planned by Dijkstra’s algorithm and the final trajectory by the proposed iSOA, respectively. (b) Updated changes to Maklink
graph model for the new obstacle. (c) The smoothed trajectory based on the cubic Bezier cure path smoother. (d) The convergence curve shows the iSOA algorithm
performance. (e)-(j) are the trajectory results and the search ranges of A* algorithm, Bidirectional A* algorithm, D*-Lite, BFS algorithm, RRT, and BIT*, respectively.
(b) Adaptability to Robot Dimensions: The mDP algorithm’s
adaptability to the robot’s physical dimensions enhances the
Maklink Graph’s path planning capabilities. By considering the
robot’s size and shape during the simplification process, the gen-
erated polygonal impediments account for the space required by
the robot to maneuver safely. This feature is crucial for ensuring
that the planned paths avoid collisions with the robot’s own body,
leading to more feasible and practical paths for real-world robot
navigation.

(c) Efficient Computation and Graph Representation: The mDP
algorithm’s efficiency in simplifying the representation of irregu-
lar barriers contributes to a more streamlined graph-based map
for the Maklink Graph method. The reduced number of vertices
in the polygonal impediments leads to a less computationally
intensive graph representation, enabling faster path planning and
navigation for autonomous robots. This efficiency is especially
14
beneficial when dealing with large and complex environments,
where computational speed is crucial.

(d) Robustness to Noise and Variability: In real-world envi-
ronments, obstacles may exhibit noise and irregularities due to
sensor inaccuracies or dynamic changes. The mDP algorithm’s
robustness to noise ensures that the generated polygonal imped-
iments can handle these variations effectively. By capturing the
essential structure of the barriers while accommodating irreg-
ularities, the Maklink Graph method becomes more reliable in
dynamic and uncertain environments, enhancing its practicality
for real-world applications.

(e) Improved Exploration and Optimization: The accurate and
adaptable polygonal impediments obtained through the mDP al-
gorithm contribute to improved exploration and optimization
capabilities of the Maklink Graph method. With a more precise
representation of the environment, the Maklink Graph can make
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nformed decisions during path planning, leading to better op-
imization of paths, avoidance of local minima, and enhanced
verall performance in finding near-optimal routes.
The proposed bio-inspired algorithm, iSOA, is adequate for

raph-based model implementations. Due to the algorithm’s mul-
iple iteration limitations, its execution time cannot be compared
o that of superior path planning algorithms. Nevertheless, its
ptimal solution outperforms these standard path planning al-
orithms, such as A*. In comparison to the sampling-based path
lanning model like BIT*, the proposed graph-based iSOA algo-
ithm is more stable and executes with less time. Consequently,
he proposed algorithm is applicable to robot path planning.
espite the promising results in simulations and comparison
tudies, the proposed Maklink Graph model does have some limi-
ations. Firstly, the accuracy of the path planning heavily depends
n the quality of the environmental data and the resolution of
he graph representation. In scenarios with highly complex and
oisy data, the path planning performance might be affected.
econdly, while the Maklink Graph addresses dynamic obstacles,
here is room for improvement in handling rapidly changing
nvironments with frequent obstacle updates. Future research
hould focus on enhancing the model’s adaptability and efficiency
n dynamic scenarios.

. Conclusion

This paper proposes a graph-based optimal path planning ap-
roach with bio-inspired algorithms to achieve rapid path plan-
ing for autonomous robotics. The introduction of the modified
ouglas–Peucker algorithm enables the approximation of irregu-
ar obstacles as polygonal obstacles based on the acquired envi-
onment image. Subsequently, the mDP-derived graph is modeled
sing Maklink graph theory, and the improved seagull optimiza-
ion algorithm is employed for optimal path planning. Further-
ore, a Bezier-curve-based approach is developed to smoothen

rajectories while adhering to curvature constraints. To evalu-
te the effectiveness of the proposed model, extensive experi-
ents are conducted in diverse real-world scenarios and com-
ared against state-of-the-art algorithms. The experimental re-
ults demonstrate that the proposed model outperforms existing
pproaches in terms of path length and time cost, validating its
uperior performance. By introducing the graph-based approach,
everaging bio-inspired algorithms, and incorporating trajectory
moothing techniques, this research contributes to the advance-
ent of rapid path planning for autonomous off-road robotics.
he proposed model showcases its effectiveness and potential for
nhancing the efficiency and performance of autonomous robots
n real-world applications. Future research directions may in-
olve further optimization and refinement of the proposed model,
onsidering additional factors such as dynamic environments,
eal-time constraints, and its implementation on actual robots.
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