Mechanical Design, Prototyping, and Validation of a Martian Robot Mining System
Batte, J. A., Collins, Z. H., Bateman, J. N., Atkins, J., Davis, M., Salley, D., Liu, Y., Bethel, C. L., Ball, J. E., & Archibald, C. (2017). Mechanical Design, Prototyping, and Validation of a Martian Robot Mining System. SAE World Congress 2017. Detroit, MI: SAE.
A robot mining system was developed by the State Space Robotic undergraduate student design team from Mississippi State University (MSU) for the 2016 NASA Robotic Mining Competition. The mining robot was designed to traverse the Martian chaotic terrain, excavate a minimum of 10 kg of Martian regolith and deposit the regolith into a collector bin within 10 minutes as part of the competition. A systems Engineering approach was followed in proceeding with this design project. The designed mining robot consisted of two major components: (1) mechanical system and (2) control system. This paper mainly focuses on the design and assessment process of the mechanical system but will also briefly mention the control system so as to evaluate the designed robotic system in its entirety. The final designed robot consists of an aluminum frame driven by four motors and wheels. It utilized a scoop and lifting arm subsystem for collecting and depositing Martian regolith. This subsystem was powered by two computers and used two commercially-of-the-shelf sensors to navigate the Martian terrain. The State Space Robotics team is composed of engineering students with different backgrounds. The present design project provides a multidisciplinary environment for the students to explore and develop their skills in designing, problem formulating and solving, teamwork, communication, project management, and outreach.