Transformation of Triclosan by Fe(III)-Saturated Montmorillonite
Liyanapatirana, C., Gwaltney, S. R., & Xia, K. (2010). Transformation of Triclosan by Fe(III)-Saturated Montmorillonite. Environmental Science & Technology. 44, 668-674.
Abiotic transformation of triclosan (TCS) was investigated by incubating TCS with Fe(III)− and Na−montmorillonite at 40% relative humidity and room temperature for up to 100 days. The TCS transformation products were characterized using LC/MS, GC/MS, and computational modeling and quantified using HPLC/UV and GC/MS. Within 1−5 days, depending on the initial TCS concentrations, about 55% of the TCS was rapidly transformed in the presence of Fe(III)−montmorillonite, producing 2,4-dichlorophenol, 3-chlorophenol, 2,4-dichlorophenol dimer, chlorophenoxy phenols, and TCS dimers and trimers. Computational modeling based on density functional theory confirmed the formation of four TCS dimer conformers and six TCS trimer conformers. The TCS phenoxy radicals, produced by Fe(III) oxidation of TCS, react with other TCS molecules to form TCS dimers. The TCS trimers were formed by attachment of TCS dimer phenoxy radicals, produced by Fe(III) oxidation of TCS dimers, with TCS molecules. Significantly smaller quantities of TCS transformation products were detected in the reactions with Na−montmorillonite compared to the reactions with Fe(III)−montmorillonite. Formation of a significant amount of 2,4-dichlorophenol, especially in reaction with Fe(III)−montmorillonite, may have negative impact on the environment because of its toxicity. However, mineral-facilitated TCS polymerization may reduce its mobility and bioavailability in soils.