Goodin, C.,
Moore, M.,
Carruth, D. W., Aspin, Z., & Kaniarz, J. (2024). Geometric Fidelity Requirements for Meshes in Automotive Lidar Simulation.
Virtual Worlds. MDPI.
3(3), 270-282.
DOI:10.3390/virtualworlds3030014. [
Abstract] [
Document Site]
Goodin, C.,
Moore, M.,
Carruth, D. W.,
Hudson, C. R., Cagle, L. D., & Jayakumar, P. (2024). An Empirical Vehicle Speed Model for Tuning Throttle Controller Parameters.
International Journal of Vehicle Performance. Inderscience.
10(2), 196-214.
DOI:10.1504/IJVP.2024.137690. [
Abstract] [
Document Site]
Carruth, D. W.,
Goodin, C.,
Dabbiru, L., Scherer, N.,
Moore, M.,
Hudson, C. R., Cagle, L. D., & Jayakumar, P. (2024). Comparing Real and Simulated Performance for an Off-Road Autonomous Ground Vehicle in Obstacle Avoidance.
Journal of Field Robotics. Wiley.
41(3), 798-810.
DOI:10.1002/rob.22289. [
Abstract] [
Document Site]
Goodin, C., Carrillo, J. T., Monroe, J. G.,
Carruth, D. W., &
Hudson, C. R. (2021). An Analytic Model for Negative Obstacle Detection with Lidar and Numerical Validation Using Physics-Based Simulation.
sensors. MDPI.
21(9), 3211.
DOI:10.3390/s21093211. [
Abstract] [
Document] [
Document Site]
Goodin, C., Sharma, S., Doude, M.,
Carruth, D. W.,
Dabbiru, L., &
Hudson, C. R. (2019). Training of Neural Networks with Automated Labeling of Simulated Sensor Data.
SAE Technical Paper 2019-01-0120. Detroit, MI.
DOI:10.4271/2019-01-0120. [
Abstract] [
Document Site]
Dabbiru, L.,
Goodin, C.,
Carruth, D. W., Aspin, Z., Carrillo, J., & Kaniarz, J. (2024). Simulation Fidelity Analysis Using Deep Neural Networks.
Proc. SPIE 13035, Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II. National Harbor, MD, USA: SPIE.
13035.
DOI:10.1117/12.3012275. [
Abstract] [
Document Site]
Goodin, C.,
Carruth, D. W.,
Dabbiru, L., Aspin, Z., Carrillo, J. T., & Kaniarz, J. (2023). Fidelity Requirements for Simulating Sensor Performance in Autonomous Ground Vehicles.
Proc SPIE 12529, Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications. Orlando, FL, USA: SPIE.
12529.
DOI:10.1117/12.2661663. [
Abstract] [
Document Site]
Dabbiru, L.,
Goodin, C.,
Carruth, D. W., & Boone, J. (2023). Object Detection in Synthetic Aerial Imagery Using Deep Learning.
Proc. SPIE 12540, Autonomous Systems: Sensors, Processing, and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure 2023. Orlando, FL, USA: SPIE.
12540.
DOI:10.1117/12.2662426. [
Abstract] [
Document Site]
Chen, J., Gugssa, M., Yee, J.,
Goodin, C., & RamDas, A. (2023). Framework for Digital Twin Creation in Off-road Environments from LiDAR Scans.
Proc. SPIE 12529, Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications. Orlando, FL.
DOI:10.1117/12.2663632. [
Document Site]
Yu, J.,
Chen, J.,
Dabbiru, L., &
Goodin, C. (2023). Analysis of LiDAR Configurations on Off-road Semantic Segmentation Performance.
Proc. SPIE 12540, Autonomous Systems: Sensors, Processing, and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure. Orlando, FL.
DOI:10.1117/12.2663098. [
Document Site]
Goodin, C.,
Carruth, D. W.,
Dabbiru, L., Cagle, L. D., Monroe, J. G., & Parker, M. W. (2023). Generating Medium-scale Synthetic Snowy Scenes for Testing Autonomous Vehicle Navigation.
Proc. SPIE 13035, Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II. National Harbor, MD, USA: SPIE.
13035.
DOI:10.1117/12.3009866. [
Abstract] [
Document Site]
Goodin, C.,
Carruth, D. W.,
Dabbiru, L.,
Hudson, C. R., Cagle, L. D., Scherer, N.,
Moore, M., & Jayakumar, P. (2022). Simulation-based Testing of Autonomous Ground Vehicles.
Proc. SPIE 12115, Autonomous Systems: Sensors, Processing and Security for Ground, Air, Sea and Space Vehicles and Infrastructure 2022. Orlando, FL, USA: SPIE.
12115.
DOI:10.1117/12.2620502. [
Abstract] [
Document Site]
Meadows, W. S.,
Hudson, C. R.,
Goodin, C.,
Dabbiru, L., Powell, B., Doude, M.,
Carruth, D. W., Islam, M.,
Ball, J. E., & Tang, B. (2019). Multi-LiDAR Placement, Calibration, Co-registration, and Processing on a Subaru Forester for Off-road Autonomous Vehicles Operations.
Proceedings Volume 11009, Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2019. Baltimore, MD.
DOI:10.1117/12.2518915. [
Abstract] [
Document Site]
Durst, P. J.,
Goodin, C., Anderson, D., &
Bethel, C. L. (2017). A Reference Autonomous Mobility Model.
50th Winter Simulation Conference (WSC 2017). Las Vegas, NV.
Monroe, J. G., Doude, M., Haupt, T.,
Henley, G.,
Card, A., Mazzola, M.,
Goodin, C., & Shurin, S. (2017). Thermal Modeling in the Powertrain Analysis and Computational Environment (PACE).
2017 NDIA Ground Vehicle Systems Engineering and Technology Symposium (GVSETS). Detroit, MI. [
Abstract] [
Document Site]
Davis, J., Bednar, A.,
Goodin, C., Durst, P., Anderson, D., &
Bethel, C. L. (2017). Optimizing Maximally Stable Extremal Region Parameters Using Machine Learning.
SPIE Defense + Commercial Sensing Expo - Infrared Technology and Applications XLIII Track. Anaheim, CA: SPIE. [
Abstract]